海洋热浪(英语:Marine heatwave;简称:MHW)是指特定海域温度高于该季节平均温度的现象。[1]海洋热浪可能由多种因素引发,包括锋面等短期天气现象、厄尔尼诺事件等季节性、年度或十年模式,以及气候变化等长期变化。[2][3][4]海洋热浪可能冲击生物多样性,例如造成珊瑚白化海星消耗性疾病英语Sea star wasting disease[5][6]海洋生物大规模死亡[7],或产生有害藻华[8]与陆地上的热浪不同,海洋热浪可以延伸数百万平方公里,持续数周至数月甚至数年。[9][10][11][12]

1982年至2016年间海洋热浪的一些例子。

重大海洋热浪事件,如2002年大堡礁热浪、[13]2003年地中海热浪、[7]2012西北大西洋热浪[2][14]和2013-2016东北太平洋热浪[15][16]都对这些地区的海洋和生物条件产生了巨大和长期的影响。[7][8][17]

2022年IPCC第六次评估报告指出,至少自2006年以来,甚至自1980年代以来,海洋热浪更加频繁、更加强烈,且持续时间更长,很可能归因于人为气候变化。[注 1][18]:381这证实了早期的发现,例如《2019年气候变化中的海洋和冰冻圈特别报告》中指出:“几乎可以肯定”全球海洋吸收了我们气候系统中90%以上的多余热量,自1982年以来,海洋变暖的速度增加了一倍,海洋热浪事件的频率也增加了一倍。[19]

定义 编辑

《IPCC第六次评估报告》对海洋热浪的定义如下:“在一段时间内,水温相对于历史上该季节的温度而言异常温暖,并且这种极端温度持续数天至数月。此现象可以在海洋的任何地方发生,规模可达处千公里。[注 2][20]

另一份出版物对异常温暖事件的定义如下:如果一个事件持续五天或更长时间,且温度高于基于30年历史基准期的第90百分位数,则被视为海洋热浪。[1]

类型 编辑

 
海洋热浪的分类[21]

对海洋热浪的定量定性分类确立了海洋热浪事件的命名系统、类型和特征。[1]

命名部分采用地点和年份,如Mediterranean 2003 (2003年地中海热浪)。[21][7]这使得研究人员能够比较每个事件的驱动因素和特征,以及海洋热浪的地理和历史趋势,并且能够在发生海洋热浪事件时轻松的沟通。[21]

至于规模分类,则有第1级至第4级。1类为中等事件,2类为强烈事件,3类为严重事件,4类为极端事件。该分级系统主要以海面温度异常作为定义指标。但随着时间的推移,它逐渐包括类型和特征。[21]

海洋热浪的类型有对称型、缓慢型、快速型、低强度型和高强度型。[1]海洋热浪事件可能有多种类型,例如同时为缓慢、高强度。海洋热浪事件的特征包括持续时间、强度(最大值、平均值、累积)、缓解速度、影响区域和频率。[1]

人们在海洋表层研究海洋热浪十多年,但它们未必只在表层发生,有时也可以发生在海床[22]

成因 编辑

 
这张图片展示了1950年至2012年之间的三个气候变异的示例:圣婴 - 小女孩振荡、北极振荡和北大西洋振荡。[23]

海洋热浪事件的成因可以分为在地性、遥相关和区域气候模式[2][3][4]有两种对这些成因的定量测量,以识别海洋热浪、平均海面温度和海面温度变化。[2][4]

在区域层面,海洋热浪事件主要由海洋平流、海气通量、温跃层稳定性和风应力主导。[2]而遥相关指的是地理上与遥远区域互相关联的气候和天气模式。[24]对于海洋热浪来说,遥相关中以大气阻塞/下沉喷射气流位置、海洋克尔文波、区域风应力、地表气温以及季节性气候振荡为主要因素。这些过程导致了区域性暖化趋势,显著影响着西边界洋流。[2]

厄尔尼诺-南方涛动现象等十年期振荡一类区域气候模式导致了东北太平洋斑点英语The Blob (Pacific Ocean)等海洋热浪事件。[25]

生物地理区域或整个地球范围内作用的成因包括十年级振荡,如太平洋十年级振荡,以及由于气候变迁导致的海洋变暖。[2][4][19]

两半球中纬度碳汇海域和热带太平洋上升流区碳排放区已被确定为持续性海洋热浪发生区。目前正在研究这些区域空气-海洋气体交换现象。[26]

气候变迁的驱动 编辑

科学家预测海洋热浪的频率、持续时间、范围和强度将继续增加。[27]:1227 这是因为海面温度将随着全球变暖继续上升,因此海洋热浪的频率和强度也将增加。海洋变暖的程度取决于温室气体排放情形,因此与人类习习相关。简言之,温室气体排放越多(或减缓措施越少),海表面温度上升就越多。科学家已经计算出以下数据:在低排放情景(称为SSP1-2.6)下,平均海表面温度将相对较小(但仍然显著)的增加0.86°C。但在高排放情景(称为SSP5-8.5)下,温度增加将高达2.89°C。[27]:393

在低排放情景下对海洋热浪的预测是,它们可能在2081年至2100年比1995年至2014年间“频率增加四倍”,而在较高排放情景下则可能增加八倍。[27]:1214这些排放情景被称为共享社会经济路径(SSP)。这些预测使用一种名为CMIP6的数学模型进行。这些预测是针对未来时段(2081年至2100年)的平均值,与过去时段(1995年至2014年)的平均值进行比较。[27]:1227

许多物种在海洋热浪事件过程中已经历了这些温度变化。[1]随着全球平均温度和极端高温事件的增加,沿海和内陆社区面临着许多增加的风险和健康影响。[28]

事件列表 编辑

自1904年以来,英国伊林港就有海面温度记录[4]并通过NOAANASA等全球组织继续测量。可以确定从1925年至今发生的事件。[4] 然而下面的列表并不能完整代表已记录的所有海洋热浪事件。

1999-2023 年部分海洋热浪列表
名称 分类 持续时间(天) 强度(°C) 面积(百万平方公里) 参考来源
1999地中海热浪 1 8 1.9 不适用 [2][7]
2003地中海热浪 2 10 5.5 0.5 [21] [2] [7]
2003地中海热浪 2 28 4.6 1.2 [21] [2] [7]
2006地中海热浪 2 33 4.0 不适用 [21] [2] [7]
1999西澳大利亚 3 132 2.1 不适用 [21] [2] [29]
2011西澳大利亚 4 66 4.9 0.95 [21] [2] [29]
2016大堡礁热浪 2 55 4.0 2.6 [21] [2] [13]
2015塔斯曼海热浪 2 252 2.7 不适用 [21] [2]
2012西北大西洋热浪 3 132 4.3 0.1–0.3 [21] [2] [14] [30]
2015东北太平洋热浪(太平洋斑点) 3 711 2.6 4.5–11.7 [15][16]
2018年南加州湾热浪 3 44 3.9 不适用 [31]
2023东北大西洋热浪 5 30 4.0-5.0 不适用 [32]

影响 编辑

健康的珊瑚

对于海洋生态系 编辑

热环境变化可能对陆地和海洋生物的健康产生严重影响。[17][28]海洋热浪事件已被证明会加剧栖息地退化、[33][34]改变物种范围分散度、[17]使对环境和经济具有重要意义的渔业的管理变得复杂,[15]导致物种大规模死亡[7][8][5]甚至重塑生态系统。[13][35]

热环境的改变不只早成栖息地退化,有时甚至会导致海草床、珊瑚和海带森林等生物栖息地的完全丧失。[33][34]这些栖息地原本是极富生物多样性地方,甚至包含了海洋很大一部分的物种。[17]洋流系统和当地热环境的变化使许多热带物种的活动范围向高纬度移动,而温带物种则失去了原有的空间。大范围的变化以及有毒藻华的爆发已经影响了全球许多物种[8]随着这些受影响物种跨越固有边界迁移和食物链的变化,原有的秩序和规律日益凌乱。

生物多样性下降与海面温度的升高有关,例如2003年地中海热浪中有25种底栖物种大规模死亡、亦有海星消耗性疾病和珊瑚白化事件。[5][7][17]2015年至2019年,地中海与气候变化相关的异常海洋热浪导致连续五年大规模海洋生物死亡。[36]更频繁和更长时间的海洋热浪事件的影响将对物种的分布产生巨大影响。[19]

珊瑚白化 编辑

大多数的证据都证明高温是造成珊瑚白化的主因,1979—1990年期间发生超过60种诱发珊瑚白化的因素[37][38]。历史上有纪录首次发生大规模的珊瑚白化现象是在1980年代早期,而首次全球性的白化现象是从1997年夏季持续至1998年。

根据詹姆斯-库克大学ARC珊瑚卓越研究中心休斯教授的说法,对汤斯维尔巴布亚新几内亚之间的大堡礁北部和中部84种珊瑚进行调查,有35%的珊瑚现在已死亡或正在死亡,由于全球变暖,连续第三年澳洲大堡礁出现大规模珊瑚白化现象[39]。2016年,记录了持续最久的珊瑚白化事件。[40] 这起事件是由厄尔尼诺现象引起。[41] 在此期间,全球70%以上的珊瑚礁遭到破坏。[41]

科学家认为,已知最古老的珊瑚白化发生在泥盆纪晚期,也是由海面温度上升引发的。它摧毁了地球历史上最大的珊瑚礁。[42][43]

对于气候模式 编辑

科学家正在研究海洋热浪如何影响大气条件。研究发现,印度洋的海洋热浪导致印度次大陆中部出现干燥条件。同时,印度半岛南部的降雨量在北孟加拉湾的海洋热浪影响下有所增加。这些变化是海洋热浪影响季风的连锁效应。[44]

缓解方案 编辑

 
2013年至2016年在东北太平洋发生的被称为“Blob”的海洋热浪。[45]

为了解决更频繁和更强烈的海洋热浪的根本原因,需要减缓气候变迁以遏制全球气温和海洋温度的上升。

更好的海洋热浪预测和先进的监测技术也能帮助减轻这些热浪带来的影响。[18]:417

参见 编辑

注释 编辑

  1. ^ 翻译自英文内容: "marine heatwaves are more frequent [...], more intense and longer [...] since the 1980s, and since at least 2006 very likely attributable to anthropogenic climate change"
  2. ^ 原文:"A period during which water temperature is abnormally warm for the time of the year relative to historical temperatures, with that extreme warmth persisting for days to months. The phenomenon can manifest in any place in the ocean and at scales of up to thousands of kilometres."

参考文献 编辑

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Hobday, Alistair J.; Alexander, Lisa V.; Perkins, Sarah E.; Smale, Dan A.; Straub, Sandra C.; Oliver, Eric C. J.; Benthuysen, Jessica A.; Burrows, Michael T.; Donat, Markus G.; Feng, Ming; Holbrook, Neil J. A hierarchical approach to defining marine heatwaves. Progress in Oceanography. 2016-02-01, 141: 227–238 [2023-08-20]. Bibcode:2016PrOce.141..227H. ISSN 0079-6611. S2CID 49583270. doi:10.1016/j.pocean.2015.12.014. (原始内容存档于2022-03-08) (英语). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 Holbrook, Neil J.; Scannell, Hillary A.; Sen Gupta, Alexander; Benthuysen, Jessica A.; Feng, Ming; Oliver, Eric C. J.; Alexander, Lisa V.; Burrows, Michael T.; Donat, Markus G.; Hobday, Alistair J.; Moore, Pippa J. A global assessment of marine heatwaves and their drivers. Nature Communications. 2019-06-14, 10 (1): 2624. Bibcode:2019NatCo..10.2624H. ISSN 2041-1723. PMC 6570771 . PMID 31201309. doi:10.1038/s41467-019-10206-z. 
  3. ^ 3.0 3.1 Oliver, Eric C. J. Mean warming not variability drives marine heatwave trends. Climate Dynamics. 2019-08-01, 53 (3): 1653–1659. Bibcode:2019ClDy...53.1653O. ISSN 1432-0894. S2CID 135167065. doi:10.1007/s00382-019-04707-2. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 Oliver, Eric C. J.; Donat, Markus G.; Burrows, Michael T.; Moore, Pippa J.; Smale, Dan A.; Alexander, Lisa V.; Benthuysen, Jessica A.; Feng, Ming; Sen Gupta, Alex; Hobday, Alistair J.; Holbrook, Neil J. Longer and more frequent marine heatwaves over the past century. Nature Communications. 2018-04-10, 9 (1): 1324. Bibcode:2018NatCo...9.1324O. ISSN 2041-1723. PMC 5893591 . PMID 29636482. doi:10.1038/s41467-018-03732-9. 
  5. ^ 5.0 5.1 5.2 Bates, AE; Hilton, BJ; Harley, CDG. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Diseases of Aquatic Organisms. 2009-11-09, 86 (3): 245–251. ISSN 0177-5103. PMID 20066959. doi:10.3354/dao02125 . 
  6. ^ Eisenlord, Morgan E.; Groner, Maya L.; Yoshioka, Reyn M.; Elliott, Joel; Maynard, Jeffrey; Fradkin, Steven; Turner, Margaret; Pyne, Katie; Rivlin, Natalie; van Hooidonk, Ruben; Harvell, C. Drew. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016-03-05, 371 (1689): 20150212. PMC 4760142 . PMID 26880844. doi:10.1098/rstb.2015.0212. 
  7. ^ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Diaz, D.; Harmelin, J. G.; Gambi, M. C.; Kersting, D. K.; Ledoux, J. B. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology. May 2009, 15 (5): 1090–1103. Bibcode:2009GCBio..15.1090G. S2CID 55566218. doi:10.1111/j.1365-2486.2008.01823.x. 
  8. ^ 8.0 8.1 8.2 8.3 McCabe, Ryan M.; Hickey, Barbara M.; Kudela, Raphael M.; Lefebvre, Kathi A.; Adams, Nicolaus G.; Bill, Brian D.; Gulland, Frances M. D.; Thomson, Richard E.; Cochlan, William P.; Trainer, Vera L. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters. 2016-10-16, 43 (19): 10366–10376. Bibcode:2016GeoRL..4310366M. ISSN 0094-8276. PMC 5129552 . PMID 27917011. doi:10.1002/2016GL070023. 
  9. ^ Bond, Nicholas A.; Cronin, Meghan F.; Freeland, Howard; Mantua, Nathan. Causes and impacts of the 2014 warm anomaly in the NE Pacific: 2014 WARM ANOMALY IN THE NE PACIFIC. Geophysical Research Letters. 2015-05-16, 42 (9): 3414–3420. S2CID 129149984. doi:10.1002/2015GL063306  (英语). 
  10. ^ Schaeffer, A.; Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds: SUBSURFACE MARINE HEAT WAVES. Geophysical Research Letters. 2017-05-28, 44 (10): 5025–5033. S2CID 134464357. doi:10.1002/2017GL073714 (英语). 
  11. ^ Perkins-Kirkpatrick, S. E.; King, A. D.; Cougnon, E. A.; Holbrook, N. J.; Grose, M. R.; Oliver, E. C. J.; Lewis, S. C.; Pourasghar, F. The Role of Natural Variability and Anthropogenic Climate Change in the 2017/18 Tasman Sea Marine Heatwave. Bulletin of the American Meteorological Society. 2019-01-01, 100 (1): S105–S110 [2023-08-20]. Bibcode:2019BAMS..100S.105P. ISSN 0003-0007. S2CID 127347944. doi:10.1175/BAMS-D-18-0116.1. hdl:1885/237324 . (原始内容存档于2023-08-20) (英语). 
  12. ^ Laufkötter, Charlotte; Zscheischler, Jakob; Frölicher, Thomas L. High-impact marine heatwaves attributable to human-induced global warming. Science. 2020-09-25, 369 (6511): 1621–1625 [2023-08-20]. Bibcode:2020Sci...369.1621L. ISSN 0036-8075. PMID 32973027. S2CID 221881814. doi:10.1126/science.aba0690. (原始内容存档于2023-08-22) (英语). 
  13. ^ 13.0 13.1 13.2 Frölicher, Thomas L.; Laufkötter, Charlotte. Emerging risks from marine heat waves. Nature Communications. December 2018, 9 (1): 650. Bibcode:2018NatCo...9..650F. ISSN 2041-1723. PMC 5811532 . PMID 29440658. doi:10.1038/s41467-018-03163-6. 
  14. ^ 14.0 14.1 Gulf of Maine Research Institute; Pershing, Andrew; Mills, Katherine; Dayton, Alexa; Franklin, Bradley; Kennedy, Brian. Evidence for Adaptation from the 2016 Marine Heatwave in the Northwest Atlantic Ocean. Oceanography. 2018-06-01, 31 (2). doi:10.5670/oceanog.2018.213 . 
  15. ^ 15.0 15.1 15.2 Scripps Institution of Oceanography; Cavole, Leticia; Demko, Alyssa; Diner, Rachel; Giddings, Ashlyn; Koester, Irina; Pagniello, Camille; Paulsen, May-Linn; Ramirez-Valdez, Arturo; Schwenck, Sarah; Yen, Nicole. Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography. 2016, 29 (2). doi:10.5670/oceanog.2016.32 . 
  16. ^ 16.0 16.1 Gentemann, Chelle L.; Fewings, Melanie R.; García-Reyes, Marisol. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave: Coastal SSTs During "the Blob". Geophysical Research Letters. 2017-01-16, 44 (1): 312–319. doi:10.1002/2016GL071039 . 
  17. ^ 17.0 17.1 17.2 17.3 17.4 Smale, Dan A.; Wernberg, Thomas; Oliver, Eric C. J.; Thomsen, Mads; Harvey, Ben P.; Straub, Sandra C.; Burrows, Michael T.; Alexander, Lisa V.; Benthuysen, Jessica A.; Donat, Markus G.; Feng, Ming. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change. April 2019, 9 (4): 306–312. Bibcode:2019NatCC...9..306S. ISSN 1758-6798. S2CID 91471054. doi:10.1038/s41558-019-0412-1. 
  18. ^ 18.0 18.1 Cooley, S., D. Schoeman, L. Bopp, P. Boyd, S. Donner, D.Y. Ghebrehiwet, S.-I. Ito, W. Kiessling, P. Martinetto, E. Ojea, M.-F. Racault, B. Rost, and M. Skern-Mauritzen, 2022: Chapter 3: Oceans and Coastal Ecosystems and Their Services页面存档备份,存于互联网档案馆). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change页面存档备份,存于互联网档案馆) [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 379–550, doi:10.1017/9781009325844.005.
  19. ^ 19.0 19.1 19.2 Special Report on the Ocean and Cryosphere in a Changing Climate — Special Report on the Ocean and Cryosphere in a Changing Climate. [2023-08-20]. (原始内容存档于2020-02-04). 
  20. ^ IPCC, 2021: Annex VII: Glossary页面存档备份,存于互联网档案馆) [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change页面存档备份,存于互联网档案馆) [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
  21. ^ 21.00 21.01 21.02 21.03 21.04 21.05 21.06 21.07 21.08 21.09 21.10 21.11 CSIRO; Hobday, Alistair; Oliver, Eric; Sen Gupta, Alex; Benthuysen, Jessica; Burrows, Michael; Donat, Markus; Holbrook, Neil; Moore, Pippa; Thomsen, Mads; Wernberg, Thomas. Categorizing and Naming Marine Heatwaves. Oceanography. 2018-06-01, 31 (2). doi:10.5670/oceanog.2018.205 . 
  22. ^ National Center for Atmospheric Research (NCAR) & University Corporation for Atmospheric Research (UCAR). Scientists identify heat wave at bottom of ocean. Phys.org. 17 Mar 2023 [2023-08-20]. (原始内容存档于2023-05-08). 
  23. ^ NOAA Climate.gov | science & information for a climate-smart nation. www.climate.gov. [2019-09-30]. 
  24. ^ Gu, D. Interdecadal Climate Fluctuations That Depend on Exchanges Between the Tropics and Extratropics. Science. 1997-02-07, 275 (5301): 805–807 [2023-08-20]. PMID 9012341. S2CID 2595302. doi:10.1126/science.275.5301.805. (原始内容存档于2023-08-20). 
  25. ^ Schwing, Franklin B.; Mendelssohn, Roy; Bograd, Steven J.; Overland, James E.; Wang, Muyin; Ito, Shin-ichi. Climate change, teleconnection patterns, and regional processes forcing marine populations in the Pacific. Journal of Marine Systems. Impact of climate variability on marine ecosystems: A comparative approach. 2010-02-10, 79 (3): 245–257. Bibcode:2010JMS....79..245S. ISSN 0924-7963. doi:10.1016/j.jmarsys.2008.11.027. 
  26. ^ Mignot, Alexandre; von Schuckmann, Karina; Landschützer, Peter; Gasparin, Florent; van Gennip, Simon; Perruche, Coralie; Lamouroux, Julien; Amm, Tristan. Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves. Nature Communications. 2022-07-25, 13 (1). ISSN 2041-1723. doi:10.1038/s41467-022-31983-0 (英语). 
  27. ^ 27.0 27.1 27.2 27.3 Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change页面存档备份,存于互联网档案馆). In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change页面存档备份,存于互联网档案馆) [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011.
  28. ^ 28.0 28.1 Greene, Scott; Kalkstein, Laurence S.; Mills, David M.; Samenow, Jason. An Examination of Climate Change on Extreme Heat Events and Climate–Mortality Relationships in Large U.S. Cities. Weather, Climate, and Society. October 2011, 3 (4): 281–292 [2023-08-20]. ISSN 1948-8327. S2CID 49322487. doi:10.1175/WCAS-D-11-00055.1 . (原始内容存档于2023-08-20). 
  29. ^ 29.0 29.1 Pearce, Alan F.; Feng, Ming. The rise and fall of the "marine heat wave" off Western Australia during the summer of 2010/2011. Journal of Marine Systems. 2013-02-01,. 111–112: 139–156. Bibcode:2013JMS...111..139P. ISSN 0924-7963. doi:10.1016/j.jmarsys.2012.10.009. 
  30. ^ Herring, Stephanie C.; Hoell, Andrew; Hoerling, Martin P.; Kossin, James P.; Schreck, Carl J.; Stott, Peter A. Introduction to Explaining Extreme Events of 2015 from a Climate Perspective. Bulletin of the American Meteorological Society. December 2016, 97 (12): S1–S3. Bibcode:2016BAMS...97S...1H. ISSN 0003-0007. doi:10.1175/BAMS-D-16-0313.1 . 
  31. ^ Fumo, James T.; Carter, Melissa L.; Flick, Reinhard E.; Rasmussen, Linda L.; Rudnick, Daniel L.; Iacobellis, Sam F. Contextualizing Marine Heatwaves in the Southern California Bight Under Anthropogenic Climate Change. Journal of Geophysical Research: Oceans. May 2020, 125 (5). Bibcode:2020JGRC..12515674F. ISSN 2169-9275. S2CID 218992543. doi:10.1029/2019JC015674  (英语). 
  32. ^ Record-breaking North Atlantic Ocean temperatures contribute to extreme marine heatwaves. Copernicus Climate Change Service. European Commission. [13 August 2023]. (原始内容存档于2023-09-05). 
  33. ^ 33.0 33.1 Salinger, M James; Renwick, James; Behrens, Erik; Mullan, A Brett; Diamond, Howard J; Sirguey, Pascal; Smith, Robert O; Trought, Michael C T; Alexander, Lisa; Cullen, Nicolas J; Fitzharris, B Blair. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environmental Research Letters. 2019-04-12, 14 (4): 044023. Bibcode:2019ERL....14d4023S. ISSN 1748-9326. doi:10.1088/1748-9326/ab012a . 
  34. ^ 34.0 34.1 Galli, Giovanni; Solidoro, Cosimo; Lovato, Tomas. Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility Organisms in a Warming Mediterranean Sea. Frontiers in Marine Science. 2017-05-11, 4: 136. ISSN 2296-7745. doi:10.3389/fmars.2017.00136 . 
  35. ^ Wernberg, T.; Bennett, S.; Babcock, R. C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C. J.; Hovey, R. K.; Harvey, E. S. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016-07-08, 353 (6295): 169–172. Bibcode:2016Sci...353..169W. ISSN 0036-8075. PMID 27387951. doi:10.1126/science.aad8745 . 
  36. ^ Garrabou, Joaquim; Gómez‐Gras, Daniel; Medrano, Alba; Cerrano, Carlo; Ponti, Massimo; Schlegel, Robert; Bensoussan, Nathaniel; Turicchia, Eva; Sini, Maria; Gerovasileiou, Vasilis; et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology. 18 July 2022, 28 (19): 5708–5725. ISSN 1354-1013. PMC 9543131 . PMID 35848527. S2CID 250622761. doi:10.1111/gcb.16301 (英语). 
  37. ^ Chumkiew, Sirilak. Impact of Global Warming on Coral Reefs. 2011 [2014-02-27]. (原始内容存档于2015-05-18) –通过ResearchGate. 
  38. ^ Huppert, Amit; Lewis Stone. Chaos in the Pacific's Coral Reef Bleaching Cycle. The American Naturalist. September 1998, 152 (3): 447–459. PMID 18811451. doi:10.1086/286181. 
  39. ^ 大堡礁:珊瑚白化現象「令35%珊瑚死亡」. BBC中文新闻网. 2016-05-30 [2016-06-20]. (原始内容存档于2016-06-02). 
  40. ^ McDermott, Amy. Coral bleaching event is longest on record. Science News. 22 June 2016 [25 July 2016]. (原始内容存档于16 August 2016). 
  41. ^ 41.0 41.1 Albright R. Can We Save the Corals?. Scientific American. December 2017, 318 (1): 42–49. Bibcode:2017SciAm.318a..42A. PMID 29257818. doi:10.1038/scientificamerican0118-42. 
  42. ^ Bridge, Tom C. L.; Baird, Andrew H.; Pandolfi, John M.; McWilliam, Michael J.; Zapalski, Mikołaj K. Functional consequences of Palaeozoic reef collapse. Scientific Reports. 2022-01-26, 12 (1): 1386. Bibcode:2022NatSR..12.1386B. ISSN 2045-2322. PMC 8792005 . PMID 35082318. doi:10.1038/s41598-022-05154-6 (英语). 
  43. ^ Zapalski MK, Nowicki J, Jakubowicz M, Berkowski B. Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017, 487: 416–429. Bibcode:2017PPP...487..416Z. doi:10.1016/j.palaeo.2017.09.028. 
  44. ^ Saranya, J. S.; Roxy, M. K.; Dasgupta, Panini; Anand, Ajay. Genesis and Trends in Marine Heatwaves Over the Tropical Indian Ocean and Their Interaction With the Indian Summer Monsoon. Journal of Geophysical Research: Oceans. February 2022, 127 (2). Bibcode:2022JGRC..12717427S. ISSN 2169-9275. doi:10.1029/2021JC017427 (英语). 
  45. ^ Naranjo, Laura. The blob | Earthdata. earthdata.nasa.gov. 2 November 2018 [2019-09-30].