海洋熱浪(英語:Marine heatwave;簡稱:MHW)是指特定海域溫度高於該季節平均溫度的現象。[1]海洋熱浪可能由多種因素引發,包括鋒面等短期天氣現象、厄爾尼諾事件等季節性、年度或十年模式,以及氣候變化等長期變化。[2][3][4]海洋熱浪可能衝擊生物多樣性,例如造成珊瑚白化海星消耗性疾病英语Sea star wasting disease[5][6]海洋生物大規模死亡[7],或產生有害藻華[8]與陸地上的熱浪不同,海洋熱浪可以延伸數百萬平方公里,持續數周至數月甚至數年。[9][10][11][12]

1982年至2016年間海洋熱浪的一些例子。

重大海洋熱浪事件,如2002年大堡礁熱浪、[13]2003年地中海熱浪、[7]2012西北大西洋熱浪[2][14]和2013-2016東北太平洋熱浪[15][16]都對這些地區的海洋和生物條件產生了巨大和長期的影響。[7][8][17]

2022年IPCC第六次評估報告指出,至少自2006年以來,甚至自1980年代以來,海洋熱浪更加頻繁、更加強烈,且持續時間更長,很可能歸因於人為氣候變化。[註 1][18]:381這證實了早期的發現,例如《2019年氣候變化中的海洋和冰凍圈特別報告》中指出:「幾乎可以肯定」全球海洋吸收了我們氣候系統中90%以上的多餘熱量,自1982年以來,海洋變暖的速度增加了一倍,海洋熱浪事件的頻率也增加了一倍。[19]

定義

编辑

《IPCC第六次評估報告》對海洋熱浪的定義如下:「在一段時間內,水溫相對於歷史上該季節的溫度而言異常溫暖,並且這種極端溫度持續數天至數月。此現象可以在海洋的任何地方發生,規模可達處千公里。[註 2][20]

另一份出版物對異常溫暖事件的定義如下:如果一個事件持續五天或更長時間,且溫度高於基於30年歷史基準期的第90百分位數,則被視為海洋熱浪。[1]

類型

编辑
 
海洋熱浪的分類[21]

對海洋熱浪的定量定性分類確立了海洋熱浪事件的命名系統、類型和特徵。[1]

命名部分採用地點和年份,如Mediterranean 2003 (2003年地中海熱浪)。[21][7]這使得研究人員能夠比較每個事件的驅動因素和特徵,以及海洋熱浪的地理和歷史趨勢,並且能夠在發生海洋熱浪事件時輕鬆的溝通。[21]

至於規模分類,則有第1級至第4級。1類為中等事件,2類為強烈事件,3類為嚴重事件,4類為極端事件。該分級系統主要以海面溫度異常作為定義指標。但隨著時間的推移,它逐漸包括類型和特徵。[21]

海洋熱浪的類型有對稱型、緩慢型、快速型、低強度型和高強度型。[1]海洋熱浪事件可能有多種類型,例如同時為緩慢、高強度。海洋熱浪事件的特徵包括持續時間、強度(最大值、平均值、累積)、緩解速度、影響區域和頻率。[1]

人們在海洋表層研究海洋熱浪十多年,但它們未必只在表層發生,有時也可以發生在海床[22]

成因

编辑
 
這張圖片展示了1950年至2012年之間的三個氣候變異的示例:聖嬰 - 小女孩振盪、北極振盪和北大西洋振盪。[23]

海洋熱浪事件的成因可以分為在地性、遙相關和區域氣候模式[2][3][4]有兩種對這些成因的定量測量,以識別海洋熱浪、平均海面溫度和海面溫度變化。[2][4]

在區域層面,海洋熱浪事件主要由海洋平流、海氣通量、溫躍層穩定性和風應力主導。[2]而遙相關指的是地理上與遙遠區域互相關聯的氣候和天氣模式。[24]對於海洋熱浪來說,遙相關中以大氣阻塞/下沉噴射氣流位置、海洋克爾文波、區域風應力、地表氣溫以及季節性氣候振盪為主要因素。這些過程導致了區域性暖化趨勢,顯著影響著西邊界洋流。[2]

厄爾尼諾-南方濤動現象等十年期振盪一類區域氣候模式導致了東北太平洋斑點英语The Blob (Pacific Ocean)等海洋熱浪事件。[25]

生物地理區域或整個地球範圍內作用的成因包括十年級振盪,如太平洋十年級振盪,以及由於氣候變遷導致的海洋暖化。[2][4][19]

兩半球中緯度碳匯海域和熱帶太平洋上升流區碳排放區已被確定為持續性海洋熱浪發生區。目前正在研究這些區域空氣-海洋氣體交換現象。[26]

氣候變遷的驅動

编辑

科學家預測海洋熱浪的頻率、持續時間、範圍和強度將繼續增加。[27]:1227 這是因為海面溫度將隨著全球暖化繼續上升,因此海洋熱浪的頻率和強度也將增加。海洋暖化的程度取決於溫室氣體排放情形,因此與人類習習相關。簡言之,溫室氣體排放越多(或減緩措施越少),海表面溫度上升就越多。科學家已經計算出以下數據:在低排放情景(稱為SSP1-2.6)下,平均海表面溫度將相對較小(但仍然顯著)的增加0.86°C。但在高排放情景(稱為SSP5-8.5)下,溫度增加將高達2.89°C。[27]:393

在低排放情景下對海洋熱浪的預測是,它們可能在2081年至2100年比1995年至2014年間「頻率增加四倍」,而在較高排放情景下則可能增加八倍。[27]:1214這些排放情景被稱為共享社會經濟路徑(SSP)。這些預測使用一種名為CMIP6的數學模型進行。這些預測是針對未來時段(2081年至2100年)的平均值,與過去時段(1995年至2014年)的平均值進行比較。[27]:1227

許多物種在海洋熱浪事件過程中已經歷了這些溫度變化。[1]隨著全球平均溫度和極端高溫事件的增加,沿海和內陸社區面臨著許多增加的風險和健康影響。[28]

事件列表

编辑

自1904年以來,英國伊林港就有海面溫度記錄[4]並通過NOAANASA等全球組織繼續測量。可以確定從1925年至今發生的事件。[4] 然而下面的列表並不能完整代表已記錄的所有海洋熱浪事件。

1999-2023 年部分海洋热浪列表
名稱 分類 持續時間(天) 強度(°C) 面積(百萬平方公里) 参考來源
1999地中海熱浪 1 8 1.9 不適用 [2][7]
2003地中海熱浪 2 10 5.5 0.5 [21] [2] [7]
2003地中海熱浪 2 28 4.6 1.2 [21] [2] [7]
2006地中海熱浪 2 33 4.0 不適用 [21] [2] [7]
1999西澳大利亞 3 132 2.1 不適用 [21] [2] [29]
2011西澳大利亞 4 66 4.9 0.95 [21] [2] [29]
2016大堡礁熱浪 2 55 4.0 2.6 [21] [2] [13]
2015塔斯曼海熱浪 2 252 2.7 不適用 [21] [2]
2012西北大西洋熱浪 3 132 4.3 0.1–0.3 [21] [2] [14] [30]
2015東北太平洋熱浪(太平洋斑點) 3 711 2.6 4.5–11.7 [15][16]
2018年南加州灣熱浪 3 44 3.9 不適用 [31]
2023東北大西洋熱浪 5 30 4.0-5.0 不適用 [32]

影響

编辑
健康的珊瑚

對於海洋生態系

编辑

熱環境變化可能對陸地和海洋生物的健康產生嚴重影響。[17][28]海洋熱浪事件已被證明會加劇棲息地退化、[33][34]改變物種範圍分散度、[17]使對環境和經濟具有重要意義的漁業的管理變得複雜,[15]導致物種大規模死亡[7][8][5]甚至重塑生態系統。[13][35]

熱環境的改變不只早成棲息地退化,有時甚至會導致海草床、珊瑚和海帶森林等生物棲息地的完全喪失。[33][34]這些棲息地原本是極富生物多樣性地方,甚至包含了海洋很大一部分的物種。[17]洋流系統和當地熱環境的變化使許多熱帶物種的活動範圍向高緯度移動,而溫帶物種則失去了原有的空間。大範圍的變化以及有毒藻華的爆發已經影響了全球許多物種[8]隨著這些受影響物種跨越固有邊界遷移和食物鏈的變化,原有的秩序和規律日益凌亂。

生物多樣性下降與海面溫度的升高有關,例如2003年地中海熱浪中有25種底棲物種大規模死亡、亦有海星消耗性疾病和珊瑚白化事件。[5][7][17]2015年至2019年,地中海與氣候變化相關的異常海洋熱浪導致連續五年大規模海洋生物死亡。[36]更頻繁和更長時間的海洋熱浪事件的影響將對物種的分佈產生巨大影響。[19]

珊瑚白化

编辑

大多數的證據都證明高溫是造成珊瑚白化的主因,1979—1990年期間發生超過60種誘發珊瑚白化的因素[37][38]。歷史上有紀錄首次發生大規模的珊瑚白化現象是在1980年代早期,而首次全球性的白化現象是從1997年夏季持續至1998年。

根據詹姆斯-庫克大學ARC珊瑚卓越研究中心休斯教授的說法,對湯斯維爾巴布亞新幾內亞之間的大堡礁北部和中部84種珊瑚進行調查,有35%的珊瑚現在已死亡或正在死亡,由於全球暖化,連續第三年澳洲大堡礁出現大規模珊瑚白化現象[39]。2016年,記錄了持續最久的珊瑚白化事件。[40] 這起事件是由聖嬰現象引起。[41] 在此期間,全球70%以上的珊瑚礁遭到破壞。[41]

科學家認為,已知最古老的珊瑚白化發生在泥盆紀晚期,也是由海面溫度上升引發的。它摧毀了地球歷史上最大的珊瑚礁。[42][43]

對於氣候模式

编辑

科學家正在研究海洋熱浪如何影響大氣條件。研究發現,印度洋的海洋熱浪導致印度次大陸中部出現乾燥條件。同時,印度半島南部的降雨量在北孟加拉灣的海洋熱浪影響下有所增加。這些變化是海洋熱浪影響季風的連鎖效應。[44]

緩解方案

编辑
 
2013年至2016年在東北太平洋發生的被稱為“Blob”的海洋熱浪。[45]

為了解決更頻繁和更強烈的海洋熱浪的根本原因,需要減緩氣候變遷以遏制全球氣溫和海洋溫度的上升。

更好的海洋熱浪預測和先進的監測技術也能幫助減輕這些熱浪帶來的影響。[18]:417

參見

编辑

註釋

编辑
  1. ^ 翻譯自英文內容: "marine heatwaves are more frequent [...], more intense and longer [...] since the 1980s, and since at least 2006 very likely attributable to anthropogenic climate change"
  2. ^ 原文:"A period during which water temperature is abnormally warm for the time of the year relative to historical temperatures, with that extreme warmth persisting for days to months. The phenomenon can manifest in any place in the ocean and at scales of up to thousands of kilometres."

參考文獻

编辑
  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Hobday, Alistair J.; Alexander, Lisa V.; Perkins, Sarah E.; Smale, Dan A.; Straub, Sandra C.; Oliver, Eric C. J.; Benthuysen, Jessica A.; Burrows, Michael T.; Donat, Markus G.; Feng, Ming; Holbrook, Neil J. A hierarchical approach to defining marine heatwaves. Progress in Oceanography. 2016-02-01, 141: 227–238 [2023-08-20]. Bibcode:2016PrOce.141..227H. ISSN 0079-6611. S2CID 49583270. doi:10.1016/j.pocean.2015.12.014. (原始内容存档于2022-03-08) (英语). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 Holbrook, Neil J.; Scannell, Hillary A.; Sen Gupta, Alexander; Benthuysen, Jessica A.; Feng, Ming; Oliver, Eric C. J.; Alexander, Lisa V.; Burrows, Michael T.; Donat, Markus G.; Hobday, Alistair J.; Moore, Pippa J. A global assessment of marine heatwaves and their drivers. Nature Communications. 2019-06-14, 10 (1): 2624. Bibcode:2019NatCo..10.2624H. ISSN 2041-1723. PMC 6570771 . PMID 31201309. doi:10.1038/s41467-019-10206-z. 
  3. ^ 3.0 3.1 Oliver, Eric C. J. Mean warming not variability drives marine heatwave trends. Climate Dynamics. 2019-08-01, 53 (3): 1653–1659. Bibcode:2019ClDy...53.1653O. ISSN 1432-0894. S2CID 135167065. doi:10.1007/s00382-019-04707-2. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 Oliver, Eric C. J.; Donat, Markus G.; Burrows, Michael T.; Moore, Pippa J.; Smale, Dan A.; Alexander, Lisa V.; Benthuysen, Jessica A.; Feng, Ming; Sen Gupta, Alex; Hobday, Alistair J.; Holbrook, Neil J. Longer and more frequent marine heatwaves over the past century. Nature Communications. 2018-04-10, 9 (1): 1324. Bibcode:2018NatCo...9.1324O. ISSN 2041-1723. PMC 5893591 . PMID 29636482. doi:10.1038/s41467-018-03732-9. 
  5. ^ 5.0 5.1 5.2 Bates, AE; Hilton, BJ; Harley, CDG. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Diseases of Aquatic Organisms. 2009-11-09, 86 (3): 245–251. ISSN 0177-5103. PMID 20066959. doi:10.3354/dao02125 . 
  6. ^ Eisenlord, Morgan E.; Groner, Maya L.; Yoshioka, Reyn M.; Elliott, Joel; Maynard, Jeffrey; Fradkin, Steven; Turner, Margaret; Pyne, Katie; Rivlin, Natalie; van Hooidonk, Ruben; Harvell, C. Drew. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016-03-05, 371 (1689): 20150212. PMC 4760142 . PMID 26880844. doi:10.1098/rstb.2015.0212. 
  7. ^ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Diaz, D.; Harmelin, J. G.; Gambi, M. C.; Kersting, D. K.; Ledoux, J. B. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology. May 2009, 15 (5): 1090–1103. Bibcode:2009GCBio..15.1090G. S2CID 55566218. doi:10.1111/j.1365-2486.2008.01823.x. 
  8. ^ 8.0 8.1 8.2 8.3 McCabe, Ryan M.; Hickey, Barbara M.; Kudela, Raphael M.; Lefebvre, Kathi A.; Adams, Nicolaus G.; Bill, Brian D.; Gulland, Frances M. D.; Thomson, Richard E.; Cochlan, William P.; Trainer, Vera L. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters. 2016-10-16, 43 (19): 10366–10376. Bibcode:2016GeoRL..4310366M. ISSN 0094-8276. PMC 5129552 . PMID 27917011. doi:10.1002/2016GL070023. 
  9. ^ Bond, Nicholas A.; Cronin, Meghan F.; Freeland, Howard; Mantua, Nathan. Causes and impacts of the 2014 warm anomaly in the NE Pacific: 2014 WARM ANOMALY IN THE NE PACIFIC. Geophysical Research Letters. 2015-05-16, 42 (9): 3414–3420. S2CID 129149984. doi:10.1002/2015GL063306  (英语). 
  10. ^ Schaeffer, A.; Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds: SUBSURFACE MARINE HEAT WAVES. Geophysical Research Letters. 2017-05-28, 44 (10): 5025–5033. S2CID 134464357. doi:10.1002/2017GL073714 (英语). 
  11. ^ Perkins-Kirkpatrick, S. E.; King, A. D.; Cougnon, E. A.; Holbrook, N. J.; Grose, M. R.; Oliver, E. C. J.; Lewis, S. C.; Pourasghar, F. The Role of Natural Variability and Anthropogenic Climate Change in the 2017/18 Tasman Sea Marine Heatwave. Bulletin of the American Meteorological Society. 2019-01-01, 100 (1): S105–S110 [2023-08-20]. Bibcode:2019BAMS..100S.105P. ISSN 0003-0007. S2CID 127347944. doi:10.1175/BAMS-D-18-0116.1. hdl:1885/237324 . (原始内容存档于2023-08-20) (英语). 
  12. ^ Laufkötter, Charlotte; Zscheischler, Jakob; Frölicher, Thomas L. High-impact marine heatwaves attributable to human-induced global warming. Science. 2020-09-25, 369 (6511): 1621–1625 [2023-08-20]. Bibcode:2020Sci...369.1621L. ISSN 0036-8075. PMID 32973027. S2CID 221881814. doi:10.1126/science.aba0690. (原始内容存档于2023-08-22) (英语). 
  13. ^ 13.0 13.1 13.2 Frölicher, Thomas L.; Laufkötter, Charlotte. Emerging risks from marine heat waves. Nature Communications. December 2018, 9 (1): 650. Bibcode:2018NatCo...9..650F. ISSN 2041-1723. PMC 5811532 . PMID 29440658. doi:10.1038/s41467-018-03163-6. 
  14. ^ 14.0 14.1 Gulf of Maine Research Institute; Pershing, Andrew; Mills, Katherine; Dayton, Alexa; Franklin, Bradley; Kennedy, Brian. Evidence for Adaptation from the 2016 Marine Heatwave in the Northwest Atlantic Ocean. Oceanography. 2018-06-01, 31 (2). doi:10.5670/oceanog.2018.213 . 
  15. ^ 15.0 15.1 15.2 Scripps Institution of Oceanography; Cavole, Leticia; Demko, Alyssa; Diner, Rachel; Giddings, Ashlyn; Koester, Irina; Pagniello, Camille; Paulsen, May-Linn; Ramirez-Valdez, Arturo; Schwenck, Sarah; Yen, Nicole. Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography. 2016, 29 (2). doi:10.5670/oceanog.2016.32 . 
  16. ^ 16.0 16.1 Gentemann, Chelle L.; Fewings, Melanie R.; García-Reyes, Marisol. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave: Coastal SSTs During "the Blob". Geophysical Research Letters. 2017-01-16, 44 (1): 312–319. doi:10.1002/2016GL071039 . 
  17. ^ 17.0 17.1 17.2 17.3 17.4 Smale, Dan A.; Wernberg, Thomas; Oliver, Eric C. J.; Thomsen, Mads; Harvey, Ben P.; Straub, Sandra C.; Burrows, Michael T.; Alexander, Lisa V.; Benthuysen, Jessica A.; Donat, Markus G.; Feng, Ming. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change. April 2019, 9 (4): 306–312. Bibcode:2019NatCC...9..306S. ISSN 1758-6798. S2CID 91471054. doi:10.1038/s41558-019-0412-1. 
  18. ^ 18.0 18.1 Cooley, S., D. Schoeman, L. Bopp, P. Boyd, S. Donner, D.Y. Ghebrehiwet, S.-I. Ito, W. Kiessling, P. Martinetto, E. Ojea, M.-F. Racault, B. Rost, and M. Skern-Mauritzen, 2022: Chapter 3: Oceans and Coastal Ecosystems and Their Services页面存档备份,存于互联网档案馆). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change页面存档备份,存于互联网档案馆) [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 379–550, doi:10.1017/9781009325844.005.
  19. ^ 19.0 19.1 19.2 Special Report on the Ocean and Cryosphere in a Changing Climate — Special Report on the Ocean and Cryosphere in a Changing Climate. [2023-08-20]. (原始内容存档于2020-02-04). 
  20. ^ IPCC, 2021: Annex VII: Glossary页面存档备份,存于互联网档案馆) [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change页面存档备份,存于互联网档案馆) [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
  21. ^ 21.00 21.01 21.02 21.03 21.04 21.05 21.06 21.07 21.08 21.09 21.10 21.11 CSIRO; Hobday, Alistair; Oliver, Eric; Sen Gupta, Alex; Benthuysen, Jessica; Burrows, Michael; Donat, Markus; Holbrook, Neil; Moore, Pippa; Thomsen, Mads; Wernberg, Thomas. Categorizing and Naming Marine Heatwaves. Oceanography. 2018-06-01, 31 (2). doi:10.5670/oceanog.2018.205 . 
  22. ^ National Center for Atmospheric Research (NCAR) & University Corporation for Atmospheric Research (UCAR). Scientists identify heat wave at bottom of ocean. Phys.org. 17 Mar 2023 [2023-08-20]. (原始内容存档于2023-05-08). 
  23. ^ NOAA Climate.gov | science & information for a climate-smart nation. www.climate.gov. [2019-09-30]. 
  24. ^ Gu, D. Interdecadal Climate Fluctuations That Depend on Exchanges Between the Tropics and Extratropics. Science. 1997-02-07, 275 (5301): 805–807 [2023-08-20]. PMID 9012341. S2CID 2595302. doi:10.1126/science.275.5301.805. (原始内容存档于2023-08-20). 
  25. ^ Schwing, Franklin B.; Mendelssohn, Roy; Bograd, Steven J.; Overland, James E.; Wang, Muyin; Ito, Shin-ichi. Climate change, teleconnection patterns, and regional processes forcing marine populations in the Pacific. Journal of Marine Systems. Impact of climate variability on marine ecosystems: A comparative approach. 2010-02-10, 79 (3): 245–257. Bibcode:2010JMS....79..245S. ISSN 0924-7963. doi:10.1016/j.jmarsys.2008.11.027. 
  26. ^ Mignot, Alexandre; von Schuckmann, Karina; Landschützer, Peter; Gasparin, Florent; van Gennip, Simon; Perruche, Coralie; Lamouroux, Julien; Amm, Tristan. Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves. Nature Communications. 2022-07-25, 13 (1). ISSN 2041-1723. doi:10.1038/s41467-022-31983-0 (英语). 
  27. ^ 27.0 27.1 27.2 27.3 Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change页面存档备份,存于互联网档案馆). In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change页面存档备份,存于互联网档案馆) [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011.
  28. ^ 28.0 28.1 Greene, Scott; Kalkstein, Laurence S.; Mills, David M.; Samenow, Jason. An Examination of Climate Change on Extreme Heat Events and Climate–Mortality Relationships in Large U.S. Cities. Weather, Climate, and Society. October 2011, 3 (4): 281–292 [2023-08-20]. ISSN 1948-8327. S2CID 49322487. doi:10.1175/WCAS-D-11-00055.1 . (原始内容存档于2023-08-20). 
  29. ^ 29.0 29.1 Pearce, Alan F.; Feng, Ming. The rise and fall of the "marine heat wave" off Western Australia during the summer of 2010/2011. Journal of Marine Systems. 2013-02-01,. 111–112: 139–156. Bibcode:2013JMS...111..139P. ISSN 0924-7963. doi:10.1016/j.jmarsys.2012.10.009. 
  30. ^ Herring, Stephanie C.; Hoell, Andrew; Hoerling, Martin P.; Kossin, James P.; Schreck, Carl J.; Stott, Peter A. Introduction to Explaining Extreme Events of 2015 from a Climate Perspective. Bulletin of the American Meteorological Society. December 2016, 97 (12): S1–S3. Bibcode:2016BAMS...97S...1H. ISSN 0003-0007. doi:10.1175/BAMS-D-16-0313.1 . 
  31. ^ Fumo, James T.; Carter, Melissa L.; Flick, Reinhard E.; Rasmussen, Linda L.; Rudnick, Daniel L.; Iacobellis, Sam F. Contextualizing Marine Heatwaves in the Southern California Bight Under Anthropogenic Climate Change. Journal of Geophysical Research: Oceans. May 2020, 125 (5). Bibcode:2020JGRC..12515674F. ISSN 2169-9275. S2CID 218992543. doi:10.1029/2019JC015674  (英语). 
  32. ^ Record-breaking North Atlantic Ocean temperatures contribute to extreme marine heatwaves. Copernicus Climate Change Service. European Commission. [13 August 2023]. (原始内容存档于2023-09-05). 
  33. ^ 33.0 33.1 Salinger, M James; Renwick, James; Behrens, Erik; Mullan, A Brett; Diamond, Howard J; Sirguey, Pascal; Smith, Robert O; Trought, Michael C T; Alexander, Lisa; Cullen, Nicolas J; Fitzharris, B Blair. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environmental Research Letters. 2019-04-12, 14 (4): 044023. Bibcode:2019ERL....14d4023S. ISSN 1748-9326. doi:10.1088/1748-9326/ab012a . 
  34. ^ 34.0 34.1 Galli, Giovanni; Solidoro, Cosimo; Lovato, Tomas. Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility Organisms in a Warming Mediterranean Sea. Frontiers in Marine Science. 2017-05-11, 4: 136. ISSN 2296-7745. doi:10.3389/fmars.2017.00136 . 
  35. ^ Wernberg, T.; Bennett, S.; Babcock, R. C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C. J.; Hovey, R. K.; Harvey, E. S. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016-07-08, 353 (6295): 169–172. Bibcode:2016Sci...353..169W. ISSN 0036-8075. PMID 27387951. doi:10.1126/science.aad8745 . 
  36. ^ Garrabou, Joaquim; Gómez‐Gras, Daniel; Medrano, Alba; Cerrano, Carlo; Ponti, Massimo; Schlegel, Robert; Bensoussan, Nathaniel; Turicchia, Eva; Sini, Maria; Gerovasileiou, Vasilis; et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology. 18 July 2022, 28 (19): 5708–5725. ISSN 1354-1013. PMC 9543131 . PMID 35848527. S2CID 250622761. doi:10.1111/gcb.16301 (英语). 
  37. ^ Chumkiew, Sirilak. Impact of Global Warming on Coral Reefs. 2011 [2014-02-27]. (原始内容存档于2015-05-18) –通过ResearchGate. 
  38. ^ Huppert, Amit; Lewis Stone. Chaos in the Pacific's Coral Reef Bleaching Cycle. The American Naturalist. September 1998, 152 (3): 447–459. PMID 18811451. doi:10.1086/286181. 
  39. ^ 大堡礁:珊瑚白化現象「令35%珊瑚死亡」. BBC中文新聞網. 2016-05-30 [2016-06-20]. (原始内容存档于2016-06-02). 
  40. ^ McDermott, Amy. Coral bleaching event is longest on record. Science News. 22 June 2016 [25 July 2016]. (原始内容存档于16 August 2016). 
  41. ^ 41.0 41.1 Albright R. Can We Save the Corals?. Scientific American. December 2017, 318 (1): 42–49. Bibcode:2017SciAm.318a..42A. PMID 29257818. doi:10.1038/scientificamerican0118-42. 
  42. ^ Bridge, Tom C. L.; Baird, Andrew H.; Pandolfi, John M.; McWilliam, Michael J.; Zapalski, Mikołaj K. Functional consequences of Palaeozoic reef collapse. Scientific Reports. 2022-01-26, 12 (1): 1386. Bibcode:2022NatSR..12.1386B. ISSN 2045-2322. PMC 8792005 . PMID 35082318. doi:10.1038/s41598-022-05154-6 (英语). 
  43. ^ Zapalski MK, Nowicki J, Jakubowicz M, Berkowski B. Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017, 487: 416–429. Bibcode:2017PPP...487..416Z. doi:10.1016/j.palaeo.2017.09.028. 
  44. ^ Saranya, J. S.; Roxy, M. K.; Dasgupta, Panini; Anand, Ajay. Genesis and Trends in Marine Heatwaves Over the Tropical Indian Ocean and Their Interaction With the Indian Summer Monsoon. Journal of Geophysical Research: Oceans. February 2022, 127 (2). Bibcode:2022JGRC..12717427S. ISSN 2169-9275. doi:10.1029/2021JC017427 (英语). 
  45. ^ Naranjo, Laura. The blob | Earthdata. earthdata.nasa.gov. 2 November 2018 [2019-09-30].