100000000
自然数
100,000,000 (一亿)是99,999,999和100,000,001之间的自然数。
100000000 | ||
---|---|---|
| ||
命名 | ||
小写 | 一亿 | |
大写 | 壹亿 | |
序数词 | 第一亿 one hundred millionth | |
识别 | ||
种类 | 整数 | |
性质 | ||
素因数分解 | ||
表示方式 | ||
值 | 100000000 | |
算筹 | ||
希腊数字 | ||
罗马数字 | ||
二进制 | 101111101011110000100000000(2) | |
三进制 | 20222011112012201(3) | |
四进制 | 11331132010000(4) | |
五进制 | 201100000000(5) | |
八进制 | 575360400(8) | |
十二进制 | 295A6454(12) | |
十六进制 | 5F5E100(16) | |
用科学记数法写成 108 。
东亚语言将“亿”作为一个计数单位,相当另一个计数单位“万”的平方。在韩文和日文中分别为 eok ( 억/億) 和oku (億)。
值得注意的 9 位数字 (100,000,001–999,999,999)
编辑100,000,001 至 199,999,999
编辑- 100,000,007 = 最小的九位素数[1]
- 100,005,153 = 最小的 9 位三角数和第 14,142 个三角数
- 100,020,001 = 100012, 回文平方
- 100,544,625 = 4653 ,最小的9位立方
- 102,030,201 = 101012,回文平方
- 102,334,155 = 斐波那契数
- 102,400,000 = 405
- 104,060,401 = 102012 = 1014 ,回文平方
- 105,413,504 = 147
- 107,890,609 = 韦德伯恩-埃瑟林顿数[2]
- 111,111,111 = 循环单位, 12345678987654321 的平方根
- 111,111,113 = 陈素数、苏菲杰曼素数、表弟素数。
- 113,379,904 = 106482 = 4843 = 226
- 115,856,201 = 415
- 119,481,296 = 对数[3]
- 121,242,121 = 110112, 回文平方
- 123,454,321 = 111112, 回文平方
- 123,456,789 = 最小无零基 10 泛数字
- 125,686,521 = 112112, 回文平方
- 126,390,032 = 补数相等的 34 珠项链数量(允许翻转) [4]
- 126,491,971 = 莱昂纳多素数
- 129,140,163 = 317
- 129,145,076 = 利兰数
- 129,644,790 = 加泰罗尼亚号码[5]
- 130,150,588 = 33 珠二元项链的数量,有 2 种颜色的珠子,颜色可以互换,但不允许翻转[6]
- 130,691,232 = 425
- 134,217,728 = 5123 = 89 = 227
- 134,218,457 = 利兰数
- 136,048,896 = 116642 = 1084
- 139,854,276 = 118262 ,最小无零底数 10 泛数字平方
- 142,547,559 = 莫茨金数[7]
- 147,008,443 = 435
- 148,035,889 = 121672 = 5293 = 236
- 157,115,917 – 24 个单元的平行四边形多格骨牌的数量。 [8]
- 157,351,936 = 125442 = 1124
- 164,916,224 = 445
- 165,580,141 = 斐波那契数
- 167,444,795 = 6 进制下的循环数
- 170,859,375 = 157
- 171,794,492 = 具有 36 个节点的缩减树的数量[9]
- 177,264,449 = 利兰数
- 179,424,673 = 第 10,000,000 个素数
- 184,528,125 = 455
- 188,378,402 = 划分{1,2,...,11}然后将每个单元(块)划分为子单元的方式数。 [10]
- 190,899,322 = 贝尔数[11]
- 191,102,976 = 138242 = 5763 = 246
- 192,622,052 = 自由 18 格骨牌的数量
- 199,960,004 = 边长为 9999 的四面体的表面点数[12]
200,000,000 至 299,999,999
编辑- 200,000,002 = 边长为 10000 的四面体的表面点数[12]
- 205,962,976 = 465
- 210,295,326 = Fine's number
- 211,016,256 = GF(2) 上的 33 次本原多项式的数量[13]
- 212,890,625 = 1-自守数[14]
- 214,358,881 = 146412 = 1214 = 118
- 222,222,222 = 纯位数
- 222,222,227 = 安全素数
- 223,092,870 = 前九个素数的乘积,即第九个素数
- 225,058,681 = 佩尔数[15]
- 225,331,713 = 以 9 为基数的自描述数字
- 229,345,007 = 475
- 232,792,560 = 高级高合数; [16]可罗萨里过剩数; [17]可被 1 到 22 所有数字整除的最小数字
- 244,140,625 = 156252 = 1253 = 256 = 512
- 244,389,457 = 利兰数
- 244,330,711 = n 使得 n | (3n + 5)
- 245,492,244 = 补数相等的 35 珠项链数量(允许翻转) [4]
- 252,648,992 = 34 珠二元项链的数量,有 2 种颜色的珠子,颜色可以互换,但不允许翻转[6]
- 253,450,711 = 韦德伯恩-埃瑟林顿素数[2]
- 254,803,968 = 485
- 267,914,296 = 斐波那契数
- 268,435,456 = 163842 = 1284 = 167 = 414 = 228
- 268,436,240 = 利兰数
- 268,473,872 = 利兰数
- 272,400,600 = 通过 20 所需的调和级数的项数
- 275,305,224 = 5 阶幻方的数量,不包括旋转和反射
- 282,475,249 = 168072 = 495 = 710
- 292,475,249 = 利兰数
300,000,000 至 399,999,999
编辑- 308,915,776 = 175762 = 6763 = 266
- 312,500,000 = 505
- 321,534,781 = 马尔可夫素数
- 331,160,281 = 莱昂纳多素数
- 333,333,333 = 纯位数
- 336,849,900 = GF(2) 上的 34 次本原多项式的数量[13]
- 345,025,251 = 515
- 350,238,175 = 具有 37 个节点的缩减树的数量[9]
- 362,802,072 = 25 个单元的平行四边形多格骨牌数量[8]
- 364,568,617 = 利兰数
- 365,496,202 = n 使得 n | (3n + 5)
- 367,567,200 = 可罗萨里过剩数,Superior highly composite number
- 380,204,032 = 525
- 381,654,729 = 唯一累进可除数,同时也是无零泛泛位数
- 387,420,489 = 196832 = 7293 = 276 = 99 = 318,迭代幂次表示为 29
- 387,426,321 = 利兰数
400,000,000 至 499,999,999
编辑- 400,080,004 = 200022, 回文平方
- 400,763,223 = 莫茨金数[7]
- 404,090,404 = 201022, 回文平方
- 405,071,317 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
- 410,338,673 = 177
- 418,195,493 = 535
- 429,981,696 = 207362 = 1444 = 128 = 100,000,000 12又名gross-great-great-gross (100 12 Great-great-grosses)
- 433,494,437 = 斐波那契素数、马尔可夫素数
- 442,386,619 = 交替阶乘[18]
- 444,101,658 = 具有 27 个节点的(无序、无标签)有根修剪树的数量[19]
- 444,444,444 = 纯位数
- 455,052,511 = 10以下的素数个数10
- 459,165,024 = 545
- 467,871,369 = 14 个顶点上的无三角形图的数量[20]
- 477,353,376 = 补数相等的 36 珠项链数量(允许翻转) [4]
- 477,638,700 = 加泰罗尼亚号码[5]
- 479,001,599 = 阶乘素数[21]
- 479,001,600 = 12!
- 481,890,304 = 219522 = 7843 = 286
- 490,853,416 = 35 珠二元项链的数量,有 2 种颜色的珠子,颜色可以交换,但不允许翻转[6]
- 499,999,751 = 苏菲·杰曼素数
500,000,000 至 599,999,999
编辑- 503,284,375 = 555
- 522,808,225 = 228652, 回文平方
- 535,828,591 = 莱昂纳多素数
- 536,870,911 = 第三个具有素数指数的复合梅森数
- 536,870,912 = 229
- 536,871,753 = 利兰数
- 542,474,231 = k 使得前 k 个素数的平方和可被 k 整除。 [22]
- 543,339,720 = 佩尔号[15]
- 550,731,776 = 565
- 554,999,445 = 以 10 为基数表示数字长度 9 的Kaprekar 常数
- 555,555,555 = 纯位数
- 574,304,985 = 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 + 99 [23]
- 575,023,344 = xx 在 x=1 处的 14 阶导数[24]
- 594,823,321 = 243892 = 8413 = 296
- 596,572,387 = 韦德本-埃瑟林顿素数[2]
600,000,000 至 699,999,999
编辑- 601,692,057 = 575
- 612,220,032 = 187
- 617,323,716 = 248462, 回文平方
- 635,318,657 = 欧拉知道的两个四次方以两种不同方式相加的最小数 ( 594 + 1584 = 1334 + 1344 )。
- 644,972,544 = 8643, 3-平滑数
- 656,356,768 = 585
- 666,666,666 = 纯位数
- 670,617,279 = Collatz 猜想的 109以下的最高停止时间整数
700,000,000 至 799,999,999
编辑- 701,408,733 = 斐波那契数
- 714,924,299 = 595
- 715,497,037 = 具有 38 个节点的缩减树的数量[9]
- 715,827,883 =瓦格斯塔夫素数, [25]雅各布斯塔尔素数
- 725,594,112 = GF(2) 上的 36 次本原多项式的数量[13]
- 729,000,000 = 270002 = 9003 = 306
- 742,624,232 = 免费 19 联骨牌数量
- 774,840,978 = 利兰数
- 777,600,000 = 605
- 777,777,777 = 纯位数
- 778,483,932 = Fine Number
- 780,291,637 = 马尔可夫素数
- 787,109,376 = 1-自守数[14]
800,000,000 至 899,999,999
编辑- 815,730,721 = 138
- 815,730,721 = 1694
- 835,210,000 = 1704
- 837,759,792 = 26 个单元的平行四边形多骨牌数量。 [8]
- 844,596,301 = 615
- 855,036,081 = 1714
- 875,213,056 = 1724
- 887,503,681 = 316
- 888,888,888 = 纯位数
- 893,554,688 = 2-自守数[26]
- 893,871,739 = 197
- 895,745,041 = 1734
900,000,000 至 999,999,999
编辑- 906,150,257 = 波利亚猜想的最小反例
- 916,132,832 = 625
- 923,187,456 = 303842 ,最大的无零泛数字平方
- 928,772,650 = 补数相等的 37 珠项链数量(允许翻转) [4]
- 929,275,200 = GF(2) 上的 35 次本原多项式的数量[13]
- 942,060,249 = 306932,回文平方
- 987,654,321 = 最大的无零泛数字
- 992,436,543 = 635
- 997,002,999 = 9993 ,最大的9位立方
- 999,950,884 = 316222 ,最大的九位数平方
- 999,961,560 = 最大的 9 位数三角数和第 44,720 个三角数
- 999,999,937 = 最大的 9 位素数
- 999,999,999 = 纯位数
参考
编辑- ^ Sloane, N.J.A. (编). Sequence A003617 (Smallest n-digit prime). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [7 September 2017].
- ^ 2.0 2.1 2.2 Sloane, N.J.A. (编). Sequence A001190 (Wedderburn-Etherington numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17].Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ^ Sloane, N.J.A. (编). Sequence A002104 (Logarithmic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ 4.0 4.1 4.2 4.3 Sloane, N.J.A. (编). Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ 5.0 5.1 Sloane, N.J.A. (编). Sequence A000108 (Catalan numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17].Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ^ 6.0 6.1 6.2 Sloane, N.J.A. (编). Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ 7.0 7.1 Sloane, N.J.A. (编). Sequence A001006 (Motzkin numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17].Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ^ 8.0 8.1 8.2 Sloane, N.J.A. (编). Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ 9.0 9.1 9.2 Sloane, N.J.A. (编). Sequence A000014 (Number of series-reduced trees with n nodes). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N.J.A. (编). Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane's A000110 : Bell or exponential numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2019-08-30).
- ^ 12.0 12.1 Sloane, N.J.A. (编). Sequence A005893 (Number of points on surface of tetrahedron). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ 13.0 13.1 13.2 13.3 Sloane, N.J.A. (编). Sequence A011260 (Number of primitive polynomials of degree n over GF(2)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ 14.0 14.1 Sloane, N.J.A. (编). Sequence A003226 (Automorphic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
- ^ 15.0 15.1 Sloane, N.J.A. (编). Sequence A000129 (Pell numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17].Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ^ Sloane's A002201 : Superior highly composite numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2010-12-29).
- ^ Sloane's A004490 : Colossally abundant numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2012-05-25).
- ^ Sloane's A005165 : Alternating factorials. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2012-10-09).
- ^ Sloane, N.J.A. (编). Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N.J.A. (编). Sequence A006785 (Number of triangle-free graphs on n vertices). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane's A088054 : Factorial primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2020-10-03).
- ^ Sloane, N.J.A. (编). Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2022-06-02].
- ^ Sloane, N.J.A. (编). Sequence A031971. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N.J.A. (编). Sequence A005727. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane's A000979 : Wagstaff primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2010-11-25).
- ^ Sloane, N.J.A. (编). Sequence A030984 (2-automorphic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2021-09-01].