基本传染数
传染病患者将病传染给他人的平均数
疾病 | 传播途径 | |
---|---|---|
麻疹 | 空气传播 | 12–18 |
白喉 | 唾液 | 6-7 |
天花 | 空气传播、 飞沫传播 | 5–7 |
脊髓灰质炎 | 粪口传播 | 5–7 |
风疹 | 空气传播、 飞沫传播 | 5–7 |
流行性腮腺炎 | 呼吸道飞沫 | 10–12[2] |
HIV/AIDS | 性传播 | 4.5 (只算非洲) [3] |
百日咳 | 空气传播、 飞沫传播 | 5.5[4] |
SARS | 空气传播、 飞沫传播、粪口传播 | 2-5[5][注 1] |
流行性感冒 (1918年流感大流行) |
空气传播、 飞沫传播 | 2–3[7] |
埃博拉出血热 (西非埃博拉病毒疫症) |
体液传播 | 1.5-2.5[8] |
COVID-19 | 飞沫传播、接触传播、粪口传播 | 1.4-3.8 [9] 3.8–8.9(截至2020年6月)[10] Delta变异株:5.1 [11] Alpha变异株:4–5 [12] Omicron变异株:7 [13] |
中东呼吸综合征 | 呼吸道飞沫 | 0.5 (0.3 –0.8 ) [14] |
普通感冒 | 呼吸道飞沫 | 2–3 [15] |
水痘 | 空气传播疾病 | 10–12[16] |
基本传染数(英语:basic reproduction number、basic reproductive number、basic reproduction ratio、basic reproductive rate;符号为 (念为 R nought 或 R zero),[17])又称基本再生数,是在流行病学上,指在没有任何防疫作为介入,同时所有人都没有免疫力的情况下,一个感染到某种传染病的初发个案,会把疾病传染给其他多少个人的平均数。基本传染数通常被写成。 的数字愈大,代表流行病的控制愈难。在没有防疫的情况下,
有效传染数
编辑在研究传染病在人群之中的传播时,通常使用有效传染数(Effective reproduction number)更加方便。有效传染数又称有效再生数,通常被写成 ,是估算病毒在一定期间内(t)传播的能力,常用最近7日的确诊个案数来估算;简而言之,有效传染数是在基本传染数的基础上,考虑到防疫措施之后的结果。在实际防疫过程之中,疫情是否可以得到控制,取决于有效传染数是否可以持续小于 1。[5]
注解
编辑参考资料
编辑- ^ 除特别标注意外,本表中 R0 数据来自:History and Epidemiology of Global Smallpox Eradication (页面存档备份,存于互联网档案馆) 这份文档来自于 CDC 及 WHO 的一堂有关天花的培训课程(见16 - 17页)。
- ^ Australian government Department of Health (页面存档备份,存于互联网档案馆) Mumps Laboratory Case Definition (LCD)
- ^ Brian Gerard Williams; Eleanor Gouws. R0 and the elimination of HIV in Africa. ResearchGate. [2020-06-16].
- ^ Kretzschmar M, Teunis PF, Pebody RG. Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries.. PLoS Med. 2010, 7 (6): e1000291. PMC 2889930 . PMID 20585374. doi:10.1371/journal.pmed.1000291.
- ^ 5.0 5.1 Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 2004, 160 (6): 509–16 [2020-01-25]. PMID 15353409. doi:10.1093/aje/kwh255. (原始内容存档于2007-10-06).
- ^ Modeling the SARS epidemic in Hong Kong (ppt) (新闻稿). 香港中文大学. 2003-05-13 [2009-02-02]. (原始内容存档于2014-11-03) (英语).
- ^ Mills CE; Robins JM; Lipsitch M. Transmissibility of 1918 pandemic influenza. Nature. 2004, 432 (7019): 904–6. Bibcode:2004Natur.432..904M. PMID 15602562. doi:10.1038/nature03063.
- ^ Althaus, Christian L. Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa. PLoS Currents. 2014, 6. PMC 4169395 . PMID 25642364. doi:10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.
- ^ Read, Jonathan M.; Bridgen, Jessica R.E.; et al. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. 2020-01-23. doi:10.1101/2020.01.23.20018549.
- ^ Sanche, Steven; Lin, Yen Ting; Xu, Chonggang; Romero-Severson, Ethan; Hengartner, Nick; Ke, Ruian. Early Release - High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2 - Volume 26, Number 7—July 2020 - Emerging Infectious Diseases journal - CDC. [2020-06-12]. doi:10.3201/eid2607.200282. (原始内容存档于2020-05-20) (美国英语).
- ^ Liu, Ying; Rocklöv, Joacim. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. Journal of Travel Medicine. 2021-10-01, 28 (7) [2022-03-26]. ISSN 1708-8305. PMC 8436367 . PMID 34369565. doi:10.1093/jtm/taab124. (原始内容存档于2022-04-19).
- ^ Gallagher, James. Covid: Is there a limit to how much worse variants can get?. BBC News. 12 June 2021 [21 July 2021]. (原始内容存档于2021-08-03).
- ^ Omicron is the Dominant COVID Variant for Two Reasons. Vitals. 2021-12-28 [2022-03-15]. (原始内容存档于2022-04-21) (美国英语).
- ^ Kucharski AJ, Althaus CL. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Euro Surveillance. June 2015, 20 (25): 14–8. PMID 26132768. doi:10.2807/1560-7917.ES2015.20.25.21167 .
- ^ Freeman C. Magic formula that will determine whether Ebola is beaten . The Telegraph. Telegraph.Co.Uk. [30 March 2020]. (原始内容存档于January 12, 2022).
- ^ Ireland's Health Services. Health Care Worker Information (PDF). [2020-03-27]. (原始内容 (PDF)存档于2020-03-26).
- ^ Milligan GN, Barrett AD. Vaccinology : an essential guide. Chichester, West Sussex: Wiley Blackwell. 2015: 310. ISBN 978-1-118-63652-7. OCLC 881386962.
延伸阅读
编辑- Heesterbeek JA. A brief history of R0 and a recipe for its calculation. Acta Biotheoretica. 2002, 50 (3): 189–204. PMID 12211331. S2CID 10178944. doi:10.1023/A:1016599411804. hdl:1874/383700.
- Heffernan JM, Smith RJ, Wahl LM. Perspectives on the basic reproductive ratio. Journal of the Royal Society, Interface. September 2005, 2 (4): 281–93. PMC 1578275 . PMID 16849186. doi:10.1098/rsif.2005.0042.
- Jones JH. Notes on (PDF). 1 May 2007 [6 November 2018]. (原始内容存档 (PDF)于2014-09-12).
- Van Den Driessche P, Watmough J. Further Notes on the Basic Reproduction Number. Mathematical Epidemiology. Lecture Notes in Mathematics 1945. 2008: 159–178. ISBN 978-3-540-78910-9. doi:10.1007/978-3-540-78911-6_6.
参见
编辑外部链接
编辑- What Is R0? Gauging Contagious Infections. [2021-07-25]. (原始内容存档于2020-05-26).