N ⊆ Z ⊆ Q ⊆ R ⊆ C {\displaystyle \mathbb {N} \subseteq \mathbb {Z} \subseteq \mathbb {Q} \subseteq \mathbb {R} \subseteq \mathbb {C} }
正数 R + {\displaystyle \mathbb {R} ^{+}} 自然数 N {\displaystyle \mathbb {N} } 正整数 Z + {\displaystyle \mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {\displaystyle \mathbb {Q} } 代数数 A {\displaystyle \mathbb {A} } 实数 R {\displaystyle \mathbb {R} } 复数 C {\displaystyle \mathbb {C} } 高斯整数 Z [ i ] {\displaystyle \mathbb {Z} [i]}
负数 R − {\displaystyle \mathbb {R} ^{-}} 整数 Z {\displaystyle \mathbb {Z} } 负整数 Z − {\displaystyle \mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {\displaystyle \mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {\displaystyle \mathbb {Z} [\omega ]}
二元数 四元数 H {\displaystyle \mathbb {H} } 八元数 O {\displaystyle \mathbb {O} } 十六元数 S {\displaystyle \mathbb {S} } 超实数 ∗ R {\displaystyle ^{*}\mathbb {R} } 大实数 上超实数
双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数
素数 P {\displaystyle \mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值
规矩数 可定义数 序数 超限数 p进数 数学常数
圆周率 π = 3.14159265 {\displaystyle \pi =3.14159265} … 自然对数的底 e = 2.718281828 {\displaystyle e=2.718281828} … 虚数单位 i = − 1 {\displaystyle i={\sqrt {-{1}}}} 无限大 ∞ {\displaystyle \infty }
有限小数,是指小数部分的位数有限的数字,与无限小数相对。有限小数都属于有理数,可以化成分数的形式。
简单来说,有限小数是指小数部分的位数是有限的,是可以写得完的。
9.8、1.0、1.1212121212等数字都是有限小数。