LTR反转录转座子

LTR反转录转座子(LTR retrotransposon)是生物基因组中一类编码区两端具有长末端重复序列(LTR)的反转录转座子,长度介于100bp至5kb之间,其mRNA可被反转录成DNA后再插入基因组中,作用机制类似反转录病毒(特别是反转录病毒目英语Ortervirales的病毒),但相较于反转录病毒可形成病毒颗粒离开细胞,LTR反转录转座子仅能在原本的细胞中复制增殖[1]。LTR反转录转座子在植物基因组中占比很高,如小麦基因组有高达75%的序列为LTR反转录转座子[2][注 1]

A:Ty3-gypsy类LTR反转录转座子的基因组结构
B:胞质中,LTR反转录转座子的复制机制。首先,宿主的tRNA引物结合到5'LTR下游紧挨着的引物结合位点(PBS)来启动逆转录,合成5'LTR的负义链cDNA后,RNA上的5'LTR被核糖核酸酶H(RNase H)降解。之后tRNA引物连同新合成的5'LTR的负义链cDNA转移到3'LTR处,作为引物启动整个负义链的合成。在负义链cDNA合成至PBS的同时,RNA上除了紧挨着3'LTR上游的多聚嘌呤带(PPT)有核糖核酸酶H抗性而不被降解以外,其余部分均被降解。此后PPT作为引物,诱导3'LTR和PBS的正义链cNDA合成。接下来负义链的PBS转过来与正义链的PBS形成互补配对,LTR的互补配对解开,并开始双链cNDA剩余部分的合成。最后合成的双链cNDA由整合酶转移到细胞核中,插入宿主DNA的某个位置

LTR反转录转座子可依序列分为Ty1-copia类、Ty3-gypsy类与BEL-Pao类,分别与假病毒科转座病毒科Belpaoviridae的反转录病毒相似,前两者均存在于动物、植物、真菌与其他真核生物基因组中,后者则仅见于部分动物基因组[5][6]。此类元件通常具有gagpol英语Pol (HIV)两基因,两者均编码多聚蛋白,转译后需经蛋白酶进一步切割,gag编码的蛋白可在细胞中形成类病毒颗粒英语Virus-like particle[7],pol则编码蛋白酶、反转录酶RNA酶H整合酶,可在类病毒颗粒中将转座子的mRNA反转录[1][8]。LTR反转录转座子由宿主细胞的RNA聚合酶Ⅱ转录,产生包含gag与pol的mRNA,有些转座子的gag与pol融合成单一开放阅读框,有些则在中间具有可致核糖体移码的序列,因仅有部分核糖体转译完gag的序列后发生移码而继续转译pol的序列,生成的gag蛋白数量将多于pol蛋白[9],不过大部分LTR反转录转座子已因累积大量突变而不能表现这些蛋白,因此失去转位能力,可表现者通常也只在宿主发育的某些阶段表现[10][11]

LTR反转录转座子与脊椎动物内源性反转录病毒(ERV)区别是后者具有编码包膜蛋白(env)的基因,前者则无,但文献中经常有混用的状况,且许多内源性反转录病毒丢失了编码蛋白的序列,有些LTR反转录转座子新获得类似env蛋白的序列,使两者差异更趋模糊[12]。LTR反转录转座子获得env基因后可能转变为内源性反转录病毒,如黑腹果蝇gypsy LTR反转录转座子即多出了类似env、编码膜蛋白的基因而具感染其他细胞的能力,成为一反转录病毒[13][1];反之内源性反转录病毒丢失env后也可能转为LTR反转录转座子[6][14][15]。LTR反转录转座子与内源性反转录病毒在人类细胞中大多不活跃表现,但皆可能影响宿主细胞的基因表现,调控异常时甚至可能激活免疫反应而造成自体免疫疾病[16]。有些LTR反转录转座子与内源性反转录病毒融入宿主基因组后渐演化出新功能,衍生成为宿主的新基因[17]

有些LTR反转录转座子还具有编码其他蛋白的开放阅读框,其功能尚不清楚;有些LTR反转录转座子则失去了编码gag与pol蛋白的开放阅读框,例如植物的微型末端重复反转录转座子(TRIM),需仰赖其他移动元件编码的反转录酶等酵素才能复制增殖[1][18][19]

参见

编辑

注脚

编辑
  1. ^ 有些文献将人类基因组中的内源性反转录病毒(ERV)也称为LTR反转录转座子,此类序列在人类基因组与小鼠基因组中分别占了约8%与10%的序列[3][4]

参考文献

编辑
  1. ^ 1.0 1.1 1.2 1.3 Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons.. Genome Biol. 2004, 5 (6): 225. PMC 463057 . PMID 15186483. doi:10.1186/gb-2004-5-6-225. 
  2. ^ Baucom, RS; Estill, JC; Chaparro, C; Upshaw, N; Jogi, A; Deragon, JM; Westerman, RP; Sanmiguel, PJ; Bennetzen, JL. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.. PLoS Genetics. November 2009, 5 (11): e1000732. PMC 2774510 . PMID 19936065. doi:10.1371/journal.pgen.1000732. 
  3. ^ McCarthy EM, McDonald JF. Long terminal repeat retrotransposons of Mus musculus. Genome Biol. 2004, 5 (3): R14. PMC 395764 . PMID 15003117. doi:10.1186/gb-2004-5-3-r14. 
  4. ^ Eickbush TH, Furano AV. Fruit flies and humans respond differently to retrotransposons.. Curr Opin Genet Dev. 2002, 12 (6): 669–74. PMID 12433580. doi:10.1016/s0959-437x(02)00359-3. 
  5. ^ Copeland CS, Mann VH, Morales ME, Kalinna BH, Brindley PJ. The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evol. Biol. 2005, 5 (1): 20. PMC 554778 . PMID 15725362. doi:10.1186/1471-2148-5-20. 
  6. ^ 6.0 6.1 Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. December 2007, 8 (12): 973–82. PMID 17984973. doi:10.1038/nrg2165. 
  7. ^ Sandmeyer, Suzanne B; Clemens, Kristina A. Function of a retrotransposon nucleocapsid protein. RNA Biology. 2010, 7 (6): 642–654. ISSN 1547-6286. PMC 3073325 . PMID 21189452. doi:10.4161/rna.7.6.14117. 
  8. ^ Wicker, Thomas; Sabot, François; Hua-Van, Aurélie; Bennetzen, Jeffrey L.; Capy, Pierre; Chalhoub, Boulos; Flavell, Andrew; Leroy, Philippe; Morgante, Michele. A unified classification system for eukaryotic transposable elements. Nature Reviews. Genetics. December 2007, 8 (12): 973–982. ISSN 1471-0064. PMID 17984973. doi:10.1038/nrg2165. 
  9. ^ GAO, XIANG; HAVECKER, ERICKA R.; BARANOV, PAVEL V.; ATKINS, JOHN F.; VOYTAS, DANIEL F. Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA. December 2003, 9 (12): 1422–1430. ISSN 1355-8382. PMC 1370496 . PMID 14623998. doi:10.1261/rna.5105503. 
  10. ^ Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ. A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event.. Genetics. 2009, 181 (4): 1183–93. PMC 2666490 . PMID 19153256. doi:10.1534/genetics.108.099150. 
  11. ^ Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C; et al. Identification of an active LTR retrotransposon in rice.. Plant J. 2009, 58 (5): 754–65. PMID 19187041. doi:10.1111/j.1365-313X.2009.03813.x. 
  12. ^ Hayward A. Origin of the retroviruses: when, where, and how?. Curr Opin Virol. 2017, 25: 23–27. PMC 5962544 . PMID 28672160. doi:10.1016/j.coviro.2017.06.006. 
  13. ^ Kim A, Terzian C, Santamaria P, Pélisson A, Purd'homme N, Bucheton A. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster.. Proc Natl Acad Sci U S A. 1994, 91 (4): 1285–9. PMC 43142 . PMID 8108403. doi:10.1073/pnas.91.4.1285. 
  14. ^ Naville M, Warren IA, Haftek-Terreau Z, Chalopin D, Brunet F, Levin P; et al. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates.. Clin Microbiol Infect. 2016, 22 (4): 312–323. PMID 26899828. doi:10.1016/j.cmi.2016.02.001. 
  15. ^ Lerat E, Capy P. Retrotransposons and retroviruses: analysis of the envelope gene.. Mol Biol Evol. 1999, 16 (9): 1198–207. PMID 10486975. doi:10.1093/oxfordjournals.molbev.a026210. 
  16. ^ Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions.. Front Immunol. 2020, 11: 593891. PMC 7691656 . PMID 33281822. doi:10.3389/fimmu.2020.593891. 
  17. ^ Kaneko-Ishino T, Ishino F. The role of genes domesticated from LTR retrotransposons and retroviruses in mammals.. Front Microbiol. 2012, 3: 262. PMC 3406341 . PMID 22866050. doi:10.3389/fmicb.2012.00262. 
  18. ^ Witte, Claus-Peter Le, Quang Hien Bureau, Thomas Kumar, Amar. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. The National Academy of Sciences. [2021-05-09]. (原始内容存档于2023-12-07). 
  19. ^ Antonius-Klemola, Kristiina; Kalendar, Ruslan; Schulman, Alan H. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics. 2006-01-11, 112 (6): 999–1008 [2021-05-09]. ISSN 0040-5752. doi:10.1007/s00122-005-0203-0. (原始内容存档于2023-12-07). 
  20. ^ Malicki M, Iliopoulou M, Hammann C. Retrotransposon Domestication and Control in Dictyostelium discoideum.. Front Microbiol. 2017, 8: 1869. PMC 5633606 . PMID 29051748. doi:10.3389/fmicb.2017.01869. 
  21. ^ Smit AF. Identification of a new, abundant superfamily of mammalian LTR-transposons.. Nucleic Acids Res. 1993, 21 (8): 1863–72. PMC 309426 . PMID 8388099. doi:10.1093/nar/21.8.1863.