完备化 (环论)

交换代数中,可以探讨一个交换环 本身,或一个 -模对一理想 的完备性。由于完备环有较容易处理的性质,完备化是研究交换环的基本工具。

几何上,交换环的完备化对应到一个闭子概形形式邻域

I-进拓扑

编辑

对于一个交换环   及其理想  (通常取为极大理想),可以藉著取   为零元素的开邻域,赋予   相应的拓扑结构,使之成为对加法的拓扑群。这种拓扑称为  -进拓扑

对于一个  -模  ,同样可考虑零元素的开邻域  ,由此得到   上的  -进拓扑。

完备化及其性质

编辑

  完备化定义为射影极限

 

正如其名,  对其  -进拓扑是完备的。对于固定的    是从  -模范畴(态射为模同态)到  -进拓扑  -模(态射为连续同态)的函子;透过自然同态  ,它是与之反向的遗忘函子的左伴随函子,因而是右正合的。

对于诺特环 平坦 -模。此时,对任何有限生成  -模  ,自然态射   是个同构。综上所述,对于诺特环  上的有限生成  -模,完备化是个正合函子

此外,完备化也可以用柯西序列构造,得到的对象是自然同构的。

例子

编辑
  • p进整数   的完备化。
  • 形式幂级数环   是多项式环    的完备化。

文献

编辑
  • David Eisenbud, Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995. xvi+785 pp. ISBN 0-387-94268-8; ISBN 0-387-94269-6