肿瘤异质性

觀察到不同的腫瘤細胞可以表現出不同的形態和表型特徵;這種現象既發生在腫瘤之間(腫瘤間異質性),也發生在腫瘤內部(腫瘤內異質性)

肿瘤异质性Tumor heterogeneity)是一个描述不同肿瘤细胞之间,表现不同型态与特性的生物现象,例如基因表达、代谢、运动、增殖与转移潜能的差异[1]。这种现象存在于肿瘤之间以及同一肿瘤内。肿瘤内异质性的最低水平是DNA复制错误的结果:每当一个细胞(正常或癌细胞)进行细胞分裂时,都会产生一些突变[2],从而形成多样化的癌细胞子类群[3]。肿瘤异质性的存在导致临床治疗受到阻碍。然而,针对肿瘤异质性的研究将可以更好地理解癌症的起源和进展,并提供更有效的治疗策略[4]

这项特性已经在多种癌症中被证实,包含白血病[5]乳癌[6]前列腺癌[7][8][9]结肠癌[10][11][12]脑瘤[13]食道癌[14]头颈癌[15]膀胱癌[16]妇科癌症[17]脂肪肉瘤[18]多发性骨髓瘤[19]

肿瘤异质性模型

编辑

目前,有两种模型用于解释肿瘤异质性的起源,分别为克隆演化模型以及癌症干细胞模型。这两个模型并不互斥,且被认为在不同肿瘤类型中产生不同程度的影响[20]

 
分支演化相较于线性演化被认为与肿瘤异质性更相关。

复制演化模型

编辑

复制演化模型于1976年由彼得·诺威尔提出。在此模型中,肿瘤最初源自于一个突变细胞,并在其增殖的过程中累积额外的突变,产生新的亚群,并且每个亚群都具有进一步分裂和突变的能力。这种异质性可能在肿瘤环境中产生相对于其他亚群更具有演化优势的亚群,而优势亚群可能随著时间的推移而成为肿瘤中主要的细胞群。该模型提出后,它使人们能够理解肿瘤生长、治疗失败以及在肿瘤形成的自然过程中发生的肿瘤侵袭。最初肿瘤细胞的演化可能透过两种模式发生:

线性演化

编辑

此模式认为突变连续且有序的突变在致癌基因肿瘤抑制基因DNA修复酶中累积,导致肿瘤细胞的复制与扩张。此模型无法反映恶性肿瘤的演化终点,因为肿瘤中突变的累积是随机[21]

分支演化

编辑

此模式比线性演化更与肿瘤异质性相关,透过细胞分裂将突变扩展到多个癌细胞亚群[22]。由于每一代的基因组不稳定性增加,基因组中突变的累积是随机发生的。长期的突变累积可能对肿瘤进展的特定阶段提供优势。肿瘤微环境也可能有助于肿瘤生长,因为它能够改变肿瘤细胞所面临的天择压力[23]

 
复制演化模型与癌症干细胞模型中,癌细胞形成肿瘤的能力。

癌症干细胞模型

编辑

癌症干细胞模型认为,肿瘤之中存在一小群具有致瘤性(tumorigenicity),这类细胞被称为癌症干细胞(cancer stem cells, CSCs),具有自我更新和分化为非致瘤子代的能力。CSC 模型认为,肿瘤细胞之间观察到的异质性是它们起源的干细胞差异的结果。干细胞变异通常是由表观遗传变化引起的,但也可能是由 CSC 群体的复制演化所引起的,其中有利的基因突变将可以在 CSC 及其后代中累积[24]

癌症干细胞模型的证据已经在多种癌症类型中被证实,包含白血病[25][26]胶质母细胞瘤[27]乳腺癌[28]前列腺癌[29]。然而,CSC的存在仍存在争议。其中一个原因是CSC的生物标记难以在多种肿瘤中重现。此外,确定致瘤潜力的方法是透过异种移植模型进行。这些方法存在固有的局限性,例如需要抑制移植动物的免疫反应,以及从原发性肿瘤部位到异种移植部位的环境条件存在显著差异(例如缺乏所需的生长因子或讯号)[30]

肿瘤异质性的类型与原因

编辑

在肿瘤细胞之间观察到多种类型的异质性,这些异质性源自于遗传和非遗传变异[31]

遗传异质性

编辑

遗传异质性是肿瘤基因组的共同特征,并且可能由多种因素导致。有些癌症是在外源性因素引入突变时引发的,例如紫外线辐射(皮肤癌)和烟草(肺癌)。一个更常见的来源是基因组不稳定,当细胞中的关键调控路径(例如DNA修复机制受损)被破坏时,经常会导致基因组不稳定,这可能造成复制错误增加,以及有丝分裂机制的缺陷,导致整个染色体大规模增加或缺失[32]。此外,一些癌症治疗(例如替莫唑胺或其他化疗药物)可能会进一步增加遗传变异[33][34]

突变的肿瘤异质性是指不同基因和样本中突变频率的变化,可以透过MutSig进行探究[35]。此外,来自相同或不同癌症类型的肿瘤样本之间的突变过程的病因可能有很大差异,并且可以表现在不同的背景依赖性突变谱中,这能够透过COSMIC Mutational Signatures[36]或MutaGene[37]进行分析。

其他类型的异质性

编辑

肿瘤细胞的基因表达谱之间也存在异质性,这经常是由潜在的表观遗传变化引起的[38]。在同一个体肿瘤样本的不同区域中可以检测到表达特征的变化。研究发现,影响H3K36甲基转移酶SETD2和组蛋白H3K4去甲基化酶KDM5C的趋同突变出现在空间上分离的肿瘤切片。相似地,MTOR(一种编码细胞调节激酶的基因)表现出组成型活性(constitutive activity),从而增加S6磷酸化,这种磷酸化可以作为卵巢透明细胞癌的生物标记[39]

机械化学异质性是生物体内真核细胞的一个特征。它可以影响表观遗传基因的调控。异质性的动态机械化学过程通过黏附的方式调节细胞表面分子群体的相互关系[40]。肿瘤的发展和扩散伴随著群体细胞内的机械化学相互作用过程的变化,并且在癌症患者当中是分层的[41]。机械化学异质性的生物现象可能用于与胃黏膜炎症患者的不同胃癌诊断[42],以及使用机械异质化的肿瘤细胞微粒进行装载时,增加基于疫苗的树突细胞的抗转移活性增强[43]

肿瘤微环境异质性

编辑

由于肿瘤微环境的异质性,肿瘤细胞之间的异质性会进一步增加。肿瘤内的区域差异(例如氧气的可用性)对肿瘤细胞施加不同的天择压力,导致肿瘤的不同空间区域产生更广泛的优势亚群。微环境对克隆优势的影响也是许多患者中原发性肿瘤和转移性肿瘤之间异质性以及相同肿瘤类型患者之间观察到的肿瘤间异质性的可能原因[44]

影响与挑战

编辑

治疗抗性

编辑

异质性肿瘤接受化疗后,很少能够杀死所有肿瘤细胞。多数的癌细胞亚群不具备抗药性而死亡,这使得抗药性肿瘤细胞亚群能够透过分支演化机制复制并生长出新的肿瘤。由此产生的再增殖肿瘤是异质的并且对所使用的药物治疗具有抗性,重新生长的肿瘤也可能更具侵袭性[1]

 
化疗会导致肿瘤细胞遭遇瓶颈效应,多数的细胞亚群会死亡,而抗药性亚群存活并继续增生。

生物标记的发现

编辑

由于肿瘤内部和肿瘤间的遗传差异,可用于预测治疗效果或预后的生物标记可能无法广泛应用。然而,有研究提出异质性的高低本身就可以用作生物标记[45],因为异质性越高的肿瘤可能更可能包含抗药性的细胞亚群,而其他可解释异质性的生物标记仍在研究中。

研究模型的缺乏与局限

编辑

目前的模型系统通常缺乏人类癌症中所见的异质性[46]。为了准确地研究肿瘤异质性,必须开发更准确的临床前模型。其中一种模型是患者来源的肿瘤异种移植物(patient-derived xenograft,PDX),在保留肿瘤异质性方面显示出极佳的实用性,同时能够详细研究复制适应性的驱动因素[47]。然而,即使这个模型也无法重现癌症的全部复杂性。

参考资料

编辑
  1. ^ 1.0 1.1 Marusyk, A; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2010, 1805 (1): 105–117. PMC 2814927 . PMID 19931353. doi:10.1016/j.bbcan.2009.11.002. 
  2. ^ Vogelstein, Bert; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer Genome Landscapes. Science. 2013, 373 (6127): 1546–1556. Bibcode:2013Sci...339.1546V. PMC 3749880 . PMID 23539594. doi:10.1126/science.1235122. 
  3. ^ Heppner, G.A. Tumor Heterogeneity. Cancer Research. 1984, 44 (6): 2259–2265. PMID 6372991. 
  4. ^ Reiter, Johannes G; Makohon-Moore, Alvin P; Gerold, Jeffrey M; Heyde, Alexander; Attiyeh, Marc A; Kohutek, Zachary A; Tokheim, Collin J; Brown, Alexia; DeBlasio, Rayne; Niyazov, Juliana; Zucker, Amanda. Minimal functional driver gene heterogeneity among untreated metastases. Science. 2018, 361 (6406): 1033–1037. Bibcode:2018Sci...361.1033R. PMC 6329287 . PMID 30190408. doi:10.1126/science.aat7171. 
  5. ^ Campbell, P. J.; Pleasance, E. D.; Stephens, P. J.; Dicks, E; Rance, R; Goodhead, I; Follows, G. A.; Green, A. R.; Futreal, P. A.; Stratton, M. R. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences. 2008, 105 (35): 13081–13086. Bibcode:2008PNAS..10513081C. PMC 2529122 . PMID 18723673. doi:10.1073/pnas.0801523105 . 
  6. ^ Shipitsin, M; Campbell, L. L.; Argani, P; Weremowicz, S; Bloushtain-Qimron, N; Yao, J; Nikolskaya, T; Serebryiskaya, T; Beroukhim, R; Hu, M; Halushka, M. K.; Sukumar, S; Parker, L. M.; Anderson, K. S.; Harris, L. N.; Garber, J. E.; Richardson, A. L.; Schnitt, S. J.; Nikolsky, Y; Gelman, R. S.; Polyak, K. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007, 11 (3): 259–273. PMID 17349583. doi:10.1016/j.ccr.2007.01.013 . 
  7. ^ MacIntosh, C. A.; Stower, M; Reid, N; Maitland, N. J. Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Research. 1998, 58 (1): 23–28. PMID 9426051. 
  8. ^ Alvarado, C; Beitel, L. K.; Sircar, K; Aprikian, A; Trifiro, M; Gottlieb, B. Somatic mosaicism and cancer: A micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Research. 2005, 65 (18): 8514–8518. PMID 16166332. doi:10.1158/0008-5472.CAN-05-0399 . 
  9. ^ Konishi, N; Hiasa, Y; Matsuda, H; Tao, M; Tsuzuki, T; Hayashi, I; Kitahori, Y; Shiraishi, T; Yatani, R; Shimazaki, J. Intratumor cellular heterogeneity and alterations in ras oncogene and p53 tumor suppressor gene in human prostate carcinoma. The American Journal of Pathology. 1995, 147 (4): 1112–1122. PMC 1871010 . PMID 7573356. 
  10. ^ González-García, I; Solé, R. V.; Costa, J. Metapopulation dynamics and spatial heterogeneity in cancer. Proceedings of the National Academy of Sciences. 2002, 99 (20): 13085–13089. Bibcode:2002PNAS...9913085G. PMC 130590 . PMID 12351679. doi:10.1073/pnas.202139299 . 
  11. ^ Samowitz, W. S.; Slattery, M. L. Regional reproducibility of microsatellite instability in sporadic colorectal cancer. Genes, Chromosomes and Cancer. 1999, 26 (2): 106–114. PMID 10469448. S2CID 5643190. doi:10.1002/(SICI)1098-2264(199910)26:2<106::AID-GCC2>3.0.CO;2-F. 
  12. ^ Giaretti, W; Monaco, R; Pujic, N; Rapallo, A; Nigro, S; Geido, E. Intratumor heterogeneity of K-ras2 mutations in colorectal adenocarcinomas: Association with degree of DNA aneuploidy. The American Journal of Pathology. 1996, 149 (1): 237–245. PMC 1865212 . PMID 8686748. 
  13. ^ Heppner, G. H. Tumor heterogeneity. Cancer Research. 1984, 44 (6): 2259–2265. PMID 6372991. 
  14. ^ Maley, C. C.; Galipeau, P. C.; Finley, J. C.; Wongsurawat, V. J.; Li, X; Sanchez, C. A.; Paulson, T. G.; Blount, P. L.; Risques, R. A.; Rabinovitch, P. S.; Reid, B. J. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genetics. 2006, 38 (4): 468–473. PMID 16565718. S2CID 1898396. doi:10.1038/ng1768. 
  15. ^ Califano, J; Van Der Riet, P; Westra, W; Nawroz, H; Clayman, G; Piantadosi, S; Corio, R; Lee, D; Greenberg, B; Koch, W; Sidransky, D. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Research. 1996, 56 (11): 2488–2492. PMID 8653682. 
  16. ^ Sauter, G; Moch, H; Gasser, T. C.; Mihatsch, M. J.; Waldman, F. M. Heterogeneity of chromosome 17 and erbB-2 gene copy number in primary and metastatic bladder cancer. Cytometry. 1995, 21 (1): 40–46. PMID 8529469. doi:10.1002/cyto.990210109 . 
  17. ^ Fujii, H; Yoshida, M; Gong, Z. X.; Matsumoto, T; Hamano, Y; Fukunaga, M; Hruban, R. H.; Gabrielson, E; Shirai, T. Frequent genetic heterogeneity in the clonal evolution of gynecological carcinosarcoma and its influence on phenotypic diversity. Cancer Research. 2000, 60 (1): 114–120. PMID 10646862. 
  18. ^ Horvai, A. E.; Devries, S; Roy, R; O'Donnell, R. J.; Waldman, F. Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma. Modern Pathology. 2009, 22 (11): 1477–1488. PMID 19734852. doi:10.1038/modpathol.2009.119 . 
  19. ^ Pantou, D; Rizou, H; Tsarouha, H; Pouli, A; Papanastasiou, K; Stamatellou, M; Trangas, T; Pandis, N; Bardi, G. Cytogenetic manifestations of multiple myeloma heterogeneity. Genes, Chromosomes and Cancer. 2005, 42 (1): 44–57. PMID 15495197. S2CID 43218546. doi:10.1002/gcc.20114. 
  20. ^ Shackleton, M; Quintana, E; Fearon, E. R.; Morrison, S. J. Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell. 2009, 138 (5): 822–829. PMID 19737509. doi:10.1016/j.cell.2009.08.017 . 
  21. ^ Gerlinger, M; Rowan, A. J.; Horswell, S; Larkin, J; Endesfelder, D; Gronroos, E; Martinez, P; Matthews, N; Stewart, A; Tarpey, P; Varela, I; Phillimore, B; Begum, S; McDonald, N. Q.; Butler, A; Jones, D; Raine, K; Latimer, C; Santos, C. R.; Nohadani, M; Eklund, A. C.; Spencer-Dene, B; Clark, G; Pickering, L; Stamp, G; Gore, M; Szallasi, Z; Downward, J; Futreal, P. A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine. 2012, 366 (10): 883–892. PMC 4878653 . PMID 22397650. doi:10.1056/NEJMoa1113205. 
  22. ^ Swanton, C. Intratumor heterogeneity: Evolution through space and time. Cancer Research. 2012, 72 (19): 4875–4882. PMC 3712191 . PMID 23002210. doi:10.1158/0008-5472.CAN-12-2217. 
  23. ^ Gerlinger, M; Rowan, A. J.; Horswell, S; Larkin, J; Endesfelder, D; Gronroos, E; Martinez, P; Matthews, N; Stewart, A; Tarpey, P; Varela, I; Phillimore, B; Begum, S; McDonald, N. Q.; Butler, A; Jones, D; Raine, K; Latimer, C; Santos, C. R.; Nohadani, M; Eklund, A. C.; Spencer-Dene, B; Clark, G; Pickering, L; Stamp, G; Gore, M; Szallasi, Z; Downward, J; Futreal, P. A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine. 2012, 366 (10): 883–892. PMC 4878653 . PMID 22397650. doi:10.1056/NEJMoa1113205. 
  24. ^ Shackleton, M; Quintana, E; Fearon, E. R.; Morrison, S. J. Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell. 2009, 138 (5): 822–829. PMID 19737509. doi:10.1016/j.cell.2009.08.017 . 
  25. ^ Lapidot, T; Sirard, C; Vormoor, J; Murdoch, B; Hoang, T; Caceres-Cortes, J; Minden, M; Paterson, B; Caligiuri, M. A.; Dick, J. E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994, 367 (6464): 645–648. Bibcode:1994Natur.367..645L. PMID 7509044. S2CID 4330788. doi:10.1038/367645a0. 
  26. ^ Wang, J. C.; Lapidot, T; Cashman, J. D.; Doedens, M; Addy, L; Sutherland, D. R.; Nayar, R; Laraya, P; Minden, M; Keating, A; Eaves, A. C. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood. 1998, 91 (7): 2406–2414. PMID 9516140. doi:10.1182/blood.V91.7.2406 . 
  27. ^ Singh, S. K.; Hawkins, C; Clarke, I. D.; Squire, J. A.; Bayani, J; Hide, T; Henkelman, R. M.; Cusimano, M. D.; Dirks, P. B. Identification of human brain tumour initiating cells. Nature. 2004, 432 (7015): 396–401. Bibcode:2004Natur.432..396S. PMID 15549107. S2CID 4430962. doi:10.1038/nature03128. 
  28. ^ Al-Hajj, M; Wicha, M. S.; Benito-Hernandez, A; Morrison, S. J.; Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences. 2003, 100 (7): 3983–3988. Bibcode:2003PNAS..100.3983A. PMC 153034 . PMID 12629218. doi:10.1073/pnas.0530291100 . 
  29. ^ Maitland, N. J.; Collins, A. T. Prostate cancer stem cells: A new target for therapy. Journal of Clinical Oncology. 2008, 26 (17): 2862–2870. PMID 18539965. doi:10.1200/JCO.2007.15.1472. 
  30. ^ Meacham, C. E.; Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature. 2013, 501 (7467): 328–337. Bibcode:2013Natur.501..328M. PMC 4521623 . PMID 24048065. doi:10.1038/nature12624. 
  31. ^ Marusyk, A; Almendro, V; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer?. Nature Reviews Cancer. 2012, 12 (5): 323–334. PMID 22513401. S2CID 24420285. doi:10.1038/nrc3261. 
  32. ^ Burrell, R. A.; McGranahan, N; Bartek, J; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013, 501 (7467): 338–345. Bibcode:2013Natur.501..338B. PMID 24048066. S2CID 4457392. doi:10.1038/nature12625. 
  33. ^ Johnson, B. E.; Mazor, T; Hong, C; Barnes, M; Aihara, K; McLean, C. Y.; Fouse, S. D.; Yamamoto, S; Ueda, H; Tatsuno, K; Asthana, S; Jalbert, L. E.; Nelson, S. J.; Bollen, A. W.; Gustafson, W. C.; Charron, E; Weiss, W. A.; Smirnov, I. V.; Song, J. S.; Olshen, A. B.; Cha, S; Zhao, Y; Moore, R. A.; Mungall, A. J.; Jones, S. J.; Hirst, M; Marra, M. A.; Saito, N; Aburatani, H; Mukasa, A. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014, 343 (6167): 189–193. Bibcode:2014Sci...343..189J. PMC 3998672 . PMID 24336570. doi:10.1126/science.1239947. 
  34. ^ Ding, L; Ley, T. J.; Larson, D. E.; Miller, C. A.; Koboldt, D. C.; Welch, J. S.; Ritchey, J. K.; Young, M. A.; Lamprecht, T; McLellan, M. D.; McMichael, J. F.; Wallis, J. W.; Lu, C; Shen, D; Harris, C. C.; Dooling, D. J.; Fulton, R. S.; Fulton, L. L.; Chen, K; Schmidt, H; Kalicki-Veizer, J; Magrini, V. J.; Cook, L; McGrath, S. D.; Vickery, T. L.; Wendl, M. C.; Heath, S; Watson, M. A.; Link, D. C.; Tomasson, M. H. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012, 481 (7382): 506–510. Bibcode:2012Natur.481..506D. PMC 3267864 . PMID 22237025. doi:10.1038/nature10738. 
  35. ^ GenePattern. www.genepattern.org. [2024-05-02]. (原始内容存档于2024-05-02). 
  36. ^ COSMIC | Mutational Signatures. cancer.sanger.ac.uk. [2024-05-02]. (原始内容存档于2024-09-30). 
  37. ^ MutaGene: Explore and analyze context-dependent mutational signatures in cancer - Home page. www.ncbi.nlm.nih.gov. [2024-05-02]. (原始内容存档于2023-03-18). 
  38. ^ Marusyk, A; Almendro, V; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer?. Nature Reviews Cancer. 2012, 12 (5): 323–334. PMID 22513401. S2CID 24420285. doi:10.1038/nrc3261. 
  39. ^ Gerlinger, M; Rowan, A. J.; Horswell, S; Larkin, J; Endesfelder, D; Gronroos, E; Martinez, P; Matthews, N; Stewart, A; Tarpey, P; Varela, I; Phillimore, B; Begum, S; McDonald, N. Q.; Butler, A; Jones, D; Raine, K; Latimer, C; Santos, C. R.; Nohadani, M; Eklund, A. C.; Spencer-Dene, B; Clark, G; Pickering, L; Stamp, G; Gore, M; Szallasi, Z; Downward, J; Futreal, P. A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine. 2012, 366 (10): 883–892. PMC 4878653 . PMID 22397650. doi:10.1056/NEJMoa1113205. 
  40. ^ G.M.Edelman. Topobiology. Scientific American. 1989, 260 (5): 76–88. Bibcode:1989SciAm.260e..76E. PMID 2717916. doi:10.1038/scientificamerican0589-76. 
  41. ^ V.E. Orel; N.N Dzyatkovskaya; M.I. Danko; A.V. Romanov; Y.I. Mel'nik; Y.A. Grinevich; S.V. Martynenko. Spatial and mechanoemission chaos of mechanically deformed tumor cells. Journal of Mechanics in Medicine and Biology. 2004, 4 (1): 31–45 [2024-05-02]. doi:10.1142/s0219519404000886. (原始内容存档于2020-04-26). 
  42. ^ V.E. Orel; A.V. Romanov; N.N. Dzyatkovskaya; Yu.I. Mel’nik. The device and algorithm for estimation of the mechanoemisson chaos in blood of patients with gastric cancer. Medical Engineering & Physics. 2002, 24 (5): 365–371 [2024-05-02]. PMID 12052364. doi:10.1016/s1350-4533(02)00022-x. (原始内容存档于2020-05-11). 
  43. ^ N. Khranovskaya; V. Orel; Y. Grinevich; O. Alekseenko; A. Romanov; O. Skachkova; N.Dzyatkovskaya; A. Burlaka; S.Lukin. Mechanical heterogenization of Lewis lung carcinoma cells can improve antimetastatic effect of dendritic cells. Journal of Mechanics in Medicine and Biology. 2012, 3 (12): 22. doi:10.1142/S0219519411004757. 
  44. ^ Junttila, M. R.; De Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013, 501 (7467): 346–354. Bibcode:2013Natur.501..346J. PMID 24048067. S2CID 4452486. doi:10.1038/nature12626. 
  45. ^ Marusyk, A; Almendro, V; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer?. Nature Reviews Cancer. 2012, 12 (5): 323–334. PMID 22513401. S2CID 24420285. doi:10.1038/nrc3261. 
  46. ^ Auman, James Todd; McLeod, Howard L. Colorectal Cancer Cell Lines Lack the Molecular Heterogeneity of Clinical Colorectal Tumors. Clinical Colorectal Cancer. 2010-01-01, 9 (1): 40–47. PMID 20100687. doi:10.3816/ccc.2010.n.005. 
  47. ^ Cassidy, John W.; Caldas, Carlos; Bruna, Alejandra. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts. Cancer Research. 2015-08-01, 75 (15): 2963–2968. ISSN 0008-5472. PMC 4539570 . PMID 26180079. doi:10.1158/0008-5472.CAN-15-0727.