草酰乙酸

化合物

草酰乙酸(Oxaloacetic acid, OAA, 或称草乙酸,oxalacetic acid)是一种结晶有机化合物,化学式:HO2CC(O)CH2CO2H。其共轭碱为生物体内许多代谢常见的中间物。参与糖质新生尿素循环乙醛酸循环氨基酸合成脂肪酸合成以及柠檬酸循环[1]等作用。

草酰乙酸
IUPAC名
Oxobutanedioic acid
丁酮二酸
英文名 Oxaloacetic acid
别名 2-氧代丁二酸
草醋酸
乙二酰乙酸
2-羰基丁二酸
丁酮二酸
2-氧丁二酸
缩写 OAA
识别
CAS号 328-42-7  checkY
PubChem 970
ChemSpider 945
SMILES
 
  • OC(C(CC(O)=O)=O)=O
EINECS 206-329-8
ChEBI 30744
IUPHAR配体 5236
性质
化学式 C4H4O5
摩尔质量 132.07 g·mol⁻¹
外观 不稳定液体
熔点 161 °C (分解)
溶解性 易溶于水
热力学
ΔfHm298K −943.21 kJ/mol
ΔcHm −1205.58 kJ/mol
危险性
欧盟危险性符号
腐蚀性腐蚀性 C
警示术语 R:R34
安全术语 S:S20, S26, S36/37/39, S45
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

性质

编辑

草酰乙酸去质子形成酸根:

HO2CC(O)CH2CO2H   O2CC(O)CH2CO2H + H+ pKa = 2.22
O2CC(O)CH2CO2H   O2CC(O)CH2CO2 + H+, pKa = 3.89

在pH值高的时候,烯醇化的质子离子化:

O2CC(O)CH2CO2   O2CC(O)CHCO2 + H+, pKa = 13.03

因草酰乙酸在烯醇的形式较为稳定,故其互变异构体具有不同熔点(顺式异构物熔点为152℃,而反式异构物熔点为184℃)

生物合成

编辑

草酰乙酸在自然界中可以借由许多种途径合成,其中最主要的途径是通过苹果酸脱氢酶氧化由丙酮酸及碳酸缩合而成的L-苹果酸(此过程需耗费ATP):

CH3C(O)CO2 + HCO3 + ATP → O2CCH2C(O)CO2 + ADP + Pi

另外,草酰乙酸也可以借由降解天冬氨酸取得。

生化功能

编辑

草酰乙酸是柠檬酸循环的中间物:草酰乙酸借由柠檬酸合酶的催化与乙酰辅酶A合成柠檬酸。此外草酰乙酸也参与了糖质新生尿素循环乙醛酸循环胺基酸合成脂肪酸合成,同时它也是琥珀酸脱氢酶的抑制物。

糖质新生

糖质新生[1]是一条由一连串11个酵素参与的代谢路径,能将非碳水化合物的基质转化为葡萄糖糖质新生的反应由粒线体的基质开始。在此,丙酮酸受到丙酮酸羧化酶催化形成草酰乙酸。接著,草酰乙酸被NADH还原成苹果酸后再将苹果酸粒线体移往细胞质。当苹果酸被移至细胞质后,苹果酸会被NAD+氧化回草酰乙酸。接下来草酰乙酸被磷酸烯醇丙酮酸羧化激酶去羧酸并以GTP为磷酸根的来源磷酸化形成2-磷酸烯醇丙酮酸。最后合成葡萄糖

尿素循环

尿素循环是利用两个铵分子及一个碳酸氢盐分子合成尿素[1]的代谢途径,通常在肝脏的肝细胞中进行。与尿素循环相关的反应可以经由两种途径制造NADH,其中一种会用到草酰乙酸:在细胞质中,反丁烯二酸会被延胡索酸水合酶催化形成苹果酸。接著,苹果酸经过苹果酸脱氢酶转化为草酰乙酸并制造一分子的NADH。最后,草酰乙酸会经由循环转化出天冬氨酸作为转氨酶,维持氮原子在细胞中的流动性。

 
草酰乙酸、苹果酸与天门冬胺酸之间的关系

乙醛酸循环

乙醛酸循环柠檬酸循环的一种变型[2]:植物以及微生物利用异柠檬酸裂合酶苹果酸合酶进行同化作用乙醛酸循环在中间步骤与柠檬酸循环略有差异,但是草酰乙酸在其中扮演了相同的角色。[1]这意味著草酰乙酸在此循环中同时是初级反应物也是最终产物,事实上草酰乙酸即为此循环的净产物(由循环中的两分子乙酰辅酶A合成)。

合成脂肪酸

首先,乙酰辅酶A被预先转化为柠檬酸粒线体移往脂肪酸合酶所在的细胞质中。此反应通常会启动柠檬酸循环产生能量,但是当细胞没有能量的需求时,会在细胞质中将柠檬酸再次裂解为乙酰辅酶A以及草酰乙酸,并以乙酰辅酶A为原料合成脂肪酸。 而脂肪酸合成的另一部分需要NADPH[3],这样的还原能力由草酰乙酸返回粒线体穿越内膜时提供:首先草酰乙酸被NADH还原成为苹果酸。接著将苹果酸脱羧形成丙酮酸后进入粒线体,在此借由丙酮酸羧化酶丙酮酸转化形成草酰乙酸。如此一来,乙酰辅酶A粒线体移往细胞质的过程会形成一分子的NADH。整体看来,此反应为自发性反应,简化如下:

HCO3 + ATP + acetyl-CoA → ADP + Pi + malonyl-CoA

合成胺基酸

有六种必需胺基酸和三种非必需胺基酸的合成需要草酰乙酸以及丙酮酸天冬氨酸以及丙氨酸是由草酰乙酸以及丙酮酸所形成[4],而天冬氨酸丙氨酸又可以借由谷氨酸转胺基形成天冬酰胺甲硫胺酸赖氨酸以及苏氨酸,如果没有草酰乙酸的参与,将不会有上述几种胺基酸被合成出来。

 
Oxaloacetate and pyruvate aminoacid synthesis

合成草酸

借由草酰乙酸酶水解草酰乙酸可以获得草酸[5]

oxaloacetate + H2O   oxalate + acetate

参考资料

编辑
  1. ^ 1.0 1.1 1.2 1.3 Nelson, David L.; Cox, Michael M. (2005), Principles of Biochemistry (4th ed.), New York: W. H. Freeman, ISBN 0-7167-4339-6
  2. ^ http://www.pearsonhighered.com/mathews/ch14/c14gc.htm
  3. ^ fatty acids synthesis. http://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/fasynthesis.htm.  外部链接存在于|publisher= (帮助)
  4. ^ http://faculty.ksu.edu.sa/69436/Documents/lecture-15-aa_from_oxaloacetate_and_pyruvate.pptx. [2015-01-14]. (原始内容存档于2013-10-21).  外部链接存在于|title= (帮助)
  5. ^ Gadd, Geoffrey M. "Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes" Advances in Microbial Physiology (1999), 41, 47-92.