算術拓撲
算術拓撲(arithmetic topology)是結合了代數數論與拓撲學的數學領域。它在代數數域和封閉可定向的三維流形之間建立起類比。
類比
編輯以下是數域和三維流形之間的一些類比[1]:
歷史
編輯在1960年代,約翰·泰特基於伽羅瓦上同調給出了類域論的拓撲解釋[2],邁克爾·阿廷與讓-路易·韋迪耶基於平展上同調也給出了類似解釋[3]。之後戴維·芒福德與尤里·馬寧各自獨立地提出素理想與扭結的類比[4],Barry Mazur作了進一步的研究[5][6]。在1990年代Reznikov[7]與Kapranov[8]開始研究這些類比,並首創術語「算術拓撲」來稱呼這一研究領域。
另見
編輯參考文獻
編輯- ^ Sikora, Adam S. "Analogies between group actions on 3-manifolds and number fields." Commentarii Mathematici Helvetici 78.4 (2003): 832-844.
- ^ J. Tate, Duality theorems in Galois cohomology over number fields, (Proc. Intern. Cong. Stockholm, 1962, p. 288-295).
- ^ M. Artin and J.-L. Verdier, Seminar on étale cohomology of number fields, Woods Hole Archived May 26, 2011, at the Wayback Machine, 1964.
- ^ Who dreamed up the primes=knots analogy? (頁面存檔備份,存於網際網路檔案館) Archived July 18, 2011, at the Wayback Machine, neverendingbooks, lieven le bruyn's blog, may 16, 2011,
- ^ Remarks on the Alexander Polynomial (頁面存檔備份,存於網際網路檔案館), Barry Mazur, c.1964
- ^ B. Mazur, Notes on ´etale cohomology of number fields (頁面存檔備份,存於網際網路檔案館), Ann. scient. ´Ec. Norm. Sup. 6 (1973), 521-552.
- ^ A. Reznikov, Three-manifolds class field theory (Homology of coverings for a nonvirtually b1-positive manifold) (頁面存檔備份,存於網際網路檔案館), Sel. math. New ser. 3, (1997), 361–399.
- ^ M. Kapranov, Analogies between the Langlands correspondence and topological quantum field theory, Progress in Math., 131, Birkhäuser, (1995), 119–151.
延伸閱讀
編輯- Masanori Morishita (2011), Knots and Primes (頁面存檔備份,存於網際網路檔案館), Springer, ISBN 978-1-4471-2157-2
- Masanori Morishita (2009), Analogies Between Knots And Primes, 3-Manifolds And Number Rings
- Christopher Deninger (2002), A note on arithmetic topology and dynamical systems
- Adam S. Sikora (2001), Analogies between group actions on 3-manifolds and number fields
- 柯蒂斯·麥克馬倫 (2003), From dynamics on surfaces to rational points on curves (頁面存檔備份,存於網際網路檔案館)
- Chao Li and Charmaine Sia (2012), Knots and Primes (頁面存檔備份,存於網際網路檔案館)