在時間與頻率的分析領域中,有不少的訊號的單純使用頻域或時域表示,而是同時使用時域與頻域來表示。
有幾種方法或轉換被里昂·柯恩統整組織被稱為"時頻分析",[ 1] [ 2] [ 3] 最常被使用的方法稱為「二次」或「雙線性時頻分析」,而此類方法中,最被廣泛使用的方法中以韋格納分佈為其中之一,其他的時頻分佈則被稱為維格納分佈 的摺積版。另一個被廣泛使用的方法為頻譜圖 ,為「短時距傅立葉轉換 」的平方,頻譜圖有着平方必為正的優點,容易由圖理解,但有着不可逆的缺點,如短時距傅立葉轉換不可逆計算,無法從頻譜圖找回原信號。而驗證這些理論與定義驗證可以參考「二次式時頻分佈理論」。[ 4]
本文主題雖是訊號處理領域,但是藉由量子力學的相空間來推導某些分佈從A分佈轉換至B分佈的過程。一個信號在相同的狀況下,給與不同的時頻分佈表示方式,透過簡單的平滑器或濾波器,計算出其他分佈。
如果我們用變數ω =2πf ,然後,借用量子力學領域中使用的符號,就可以顯示該時間-頻率表示,如維格納分佈函數和其它雙線性時間-頻率分佈,可表示為
C
(
t
,
ω
)
=
1
4
π
2
∭
s
∗
(
u
−
1
2
τ
)
s
(
u
+
1
2
τ
)
ϕ
(
θ
,
τ
)
e
−
j
θ
t
−
j
τ
ω
+
j
θ
u
d
u
d
τ
d
θ
,
{\displaystyle C(t,\omega )={\dfrac {1}{4\pi ^{2}}}\iiint s^{*}\left(u-{\dfrac {1}{2}}\tau \right)s\left(u+{\dfrac {1}{2}}\tau \right)\phi (\theta ,\tau )e^{-j\theta t-j\tau \omega +j\theta u}\,du\,d\tau \,d\theta ,}
(1)
ϕ
(
θ
,
τ
)
{\displaystyle \phi (\theta ,\tau )}
為一定義其分佈及特性之二維函數。
維格納分佈的核為一。但在一般型式裏任何分佈的核為一沒有任何的意義,在其他狀況下維格納分佈的核應為其他結果。
特徵方程式為雙傅立葉轉換,從方程式(1)可以得到
C
(
t
,
ω
)
=
1
4
π
2
∬
M
(
θ
,
τ
)
e
−
j
θ
t
−
j
τ
ω
d
θ
d
τ
{\displaystyle C(t,\omega )={\dfrac {1}{4\pi ^{2}}}\iint M(\theta ,\tau )e^{-j\theta t-j\tau \omega }\,d\theta \,d\tau }
(2)
M
(
θ
,
τ
)
=
ϕ
(
θ
,
τ
)
∫
s
∗
(
u
−
1
2
τ
)
s
(
u
+
1
2
τ
)
e
j
θ
u
d
u
=
ϕ
(
θ
,
τ
)
A
(
θ
,
τ
)
{\displaystyle {\begin{alignedat}{2}M(\theta ,\tau )&=\phi (\theta ,\tau )\int s^{*}\left(u-{\dfrac {1}{2}}\tau \right)s\left(u+{\dfrac {1}{2}}\tau \right)e^{j\theta u}\,du\\&=\phi (\theta ,\tau )A(\theta ,\tau )\\\end{alignedat}}}
(3)
A
(
θ
,
τ
)
{\displaystyle A(\theta ,\tau )}
為對稱模糊函數,特徵方程式也可易被稱為廣義模糊函式。
假設有兩個分佈
C
1
{\displaystyle C_{1}}
and
C
2
{\displaystyle C_{2}}
,個別對應核為
ϕ
1
{\displaystyle \phi _{1}}
and
ϕ
2
{\displaystyle \phi _{2}}
,特徵方程式為
M
1
(
ϕ
,
τ
)
=
ϕ
1
(
θ
,
τ
)
∫
s
∗
(
u
−
1
2
τ
)
s
(
u
+
1
2
τ
)
e
j
θ
u
d
u
{\displaystyle M_{1}(\phi ,\tau )=\phi _{1}(\theta ,\tau )\int s^{*}\left(u-{\dfrac {1}{2}}\tau \right)s\left(u+{\dfrac {1}{2}}\tau \right)e^{j\theta u}\,du}
(4)
M
2
(
ϕ
,
τ
)
=
ϕ
2
(
θ
,
τ
)
∫
s
∗
(
u
−
1
2
τ
)
s
(
u
+
1
2
τ
)
e
j
θ
u
d
u
{\displaystyle M_{2}(\phi ,\tau )=\phi _{2}(\theta ,\tau )\int s^{*}\left(u-{\dfrac {1}{2}}\tau \right)s\left(u+{\dfrac {1}{2}}\tau \right)e^{j\theta u}\,du}
(5)
方程式(4)、(5)相除得
M
1
(
ϕ
,
τ
)
=
ϕ
1
(
θ
,
τ
)
ϕ
2
(
θ
,
τ
)
M
2
(
ϕ
,
τ
)
{\displaystyle M_{1}(\phi ,\tau )={\dfrac {\phi _{1}(\theta ,\tau )}{\phi _{2}(\theta ,\tau )}}M_{2}(\phi ,\tau )}
(6)
方程式(6)相當重要,其結果使其連接特徵方程式在有線區域內之核不為零。
欲獲得兩分佈之間的關係,需使用雙傅立葉轉換並使用方程式(2)
C
1
(
t
,
ω
)
=
1
4
π
2
∬
ϕ
1
(
θ
,
τ
)
ϕ
2
(
θ
,
τ
)
M
2
(
θ
,
τ
)
e
−
j
θ
t
−
j
τ
ω
d
θ
d
τ
{\displaystyle C_{1}(t,\omega )={\dfrac {1}{4\pi ^{2}}}\iint {\dfrac {\phi _{1}(\theta ,\tau )}{\phi _{2}(\theta ,\tau )}}M_{2}(\theta ,\tau )e^{-j\theta t-j\tau \omega }\,d\theta \,d\tau }
(7)
用
C
2
{\displaystyle C_{2}}
來表示
M
2
{\displaystyle M_{2}}
C
1
(
t
,
ω
)
=
1
4
π
2
⨌
ϕ
1
(
θ
,
τ
)
ϕ
2
(
θ
,
τ
)
C
2
(
t
,
ω
′
)
e
j
θ
(
t
′
−
t
)
+
j
τ
(
ω
′
−
ω
)
d
θ
d
τ
d
t
′
d
ω
′
{\displaystyle C_{1}(t,\omega )={\dfrac {1}{4\pi ^{2}}}\iiiint {\dfrac {\phi _{1}(\theta ,\tau )}{\phi _{2}(\theta ,\tau )}}C_{2}(t,\omega ^{'})e^{j\theta (t^{'}-t)+j\tau (\omega ^{'}-\omega )}\,d\theta \,d\tau \,dt^{'}\,d\omega ^{'}}
(8)
可改寫成
C
1
(
t
,
ω
)
=
∬
g
12
(
t
′
−
t
,
ω
′
−
ω
)
C
2
(
t
,
ω
′
)
d
t
′
d
ω
′
{\displaystyle C_{1}(t,\omega )=\iint g_{12}(t^{'}-t,\omega '-\omega )C_{2}(t,\omega ')\,dt^{'}\,d\omega '}
(9)
其中,
g
12
(
t
,
ω
)
=
1
4
π
2
∬
ϕ
1
(
θ
,
τ
)
ϕ
2
(
θ
,
τ
)
e
j
θ
t
+
j
τ
ω
d
θ
d
τ
{\displaystyle g_{12}(t,\omega )={\dfrac {1}{4\pi ^{2}}}\iint {\dfrac {\phi _{1}(\theta ,\tau )}{\phi _{2}(\theta ,\tau )}}e^{j\theta t+j\tau \omega }\,d\theta \,d\tau }
(10)
我們專注於其中一個從任意代表性的頻譜轉換的情況,在方程式(9)中,
C
1
{\displaystyle C_{1}}
為頻譜圖而
C
2
{\displaystyle C_{2}}
為任意數,為了簡化符號使用以下表示,
ϕ
S
P
=
ϕ
1
{\displaystyle \phi _{SP}=\phi _{1}}
,
ϕ
=
ϕ
2
{\displaystyle \phi =\phi _{2}}
,
g
S
P
=
g
12
{\displaystyle g_{SP}=g_{12}}
,可被表示為
C
S
P
(
t
,
ω
)
=
∬
g
S
P
(
t
′
−
t
,
ω
′
−
ω
)
C
(
t
,
ω
′
)
d
t
′
d
ω
′
{\displaystyle C_{SP}(t,\omega )=\iint g_{SP}(t^{'}-t,\omega ^{'}-\omega )C(t,\omega ^{'})\,dt^{'}\,d\omega ^{'}}
(11)
頻譜圖的核為
g
S
P
(
t
,
ω
)
=
1
4
π
2
∬
A
h
(
−
θ
,
τ
)
ϕ
(
θ
,
τ
)
e
j
θ
t
+
j
τ
ω
d
θ
d
τ
=
1
4
π
2
∭
1
ϕ
(
θ
,
τ
)
h
∗
(
u
−
1
2
τ
)
h
(
u
+
1
2
τ
)
e
j
θ
t
+
j
τ
ω
−
j
θ
u
d
u
d
τ
d
θ
=
1
4
π
2
∭
h
∗
(
u
−
1
2
τ
)
h
(
u
+
1
2
τ
)
ϕ
(
θ
,
τ
)
ϕ
(
θ
,
τ
)
ϕ
(
−
θ
,
τ
)
e
−
j
θ
t
+
j
τ
ω
+
j
θ
u
d
u
d
τ
d
θ
{\displaystyle {\begin{alignedat}{3}g_{SP}(t,\omega )&={\dfrac {1}{4\pi ^{2}}}\iint {\dfrac {A_{h}(-\theta ,\tau )}{\phi (\theta ,\tau )}}e^{j\theta t+j\tau \omega }\,d\theta \,d\tau \\&={\dfrac {1}{4\pi ^{2}}}\iiint {\dfrac {1}{\phi (\theta ,\tau )}}h^{*}(u-{\dfrac {1}{2}}\tau )h(u+{\dfrac {1}{2}}\tau )e^{j\theta t+j\tau \omega -j\theta u}\,du\,d\tau \,d\theta \\&={\dfrac {1}{4\pi ^{2}}}\iiint h^{*}(u-{\dfrac {1}{2}}\tau )h(u+{\dfrac {1}{2}}\tau ){\dfrac {\phi (\theta ,\tau )}{\phi (\theta ,\tau )\phi (-\theta ,\tau )}}e^{-j\theta t+j\tau \omega +j\theta u}\,du\,d\tau \,d\theta \\\end{alignedat}}}
(12)
令
ϕ
(
−
θ
,
τ
)
ϕ
(
θ
,
τ
)
=
1
{\displaystyle \phi (-\theta ,\tau )\phi (\theta ,\tau )=1}
,
g
S
P
(
t
,
ω
)
{\displaystyle g_{SP}(t,\omega )}
為窗函數,然而在
−
ω
{\displaystyle -\omega }
狀況下得
g
S
P
(
t
,
ω
)
=
C
h
(
t
,
−
ω
)
{\displaystyle g_{SP}(t,\omega )=C_{h}(t,-\omega )}
(13)
使其核滿足
ϕ
(
−
θ
,
τ
)
ϕ
(
θ
,
τ
)
=
1
{\displaystyle \phi (-\theta ,\tau )\phi (\theta ,\tau )=1}
C
S
P
(
t
,
ω
)
=
∬
C
s
(
t
′
,
ω
′
)
C
h
(
t
′
−
t
,
ω
′
−
ω
)
d
t
′
d
ω
′
{\displaystyle C_{SP}(t,\omega )=\iint C_{s}(t^{'},\omega ^{'})C_{h}(t^{'}-t,\omega ^{'}-\omega )\,dt^{'}\,d\omega ^{'}}
(14)
其核亦滿足
ϕ
(
−
θ
,
τ
)
ϕ
(
θ
,
τ
)
=
1
{\displaystyle \phi (-\theta ,\tau )\phi (\theta ,\tau )=1}
其證明可見Janssen[4]. 當
ϕ
(
−
θ
,
τ
)
ϕ
(
θ
,
τ
)
{\displaystyle \phi (-\theta ,\tau )\phi (\theta ,\tau )}
不等於1時,
C
S
P
(
t
,
ω
)
=
⨌
G
(
t
″
,
ω
″
)
C
s
(
t
′
,
ω
′
)
C
h
(
t
″
+
t
′
−
t
,
−
ω
″
+
ω
−
ω
′
)
d
t
′
d
t
″
d
ω
d
ω
″
{\displaystyle C_{SP}(t,\omega )=\iiiint G(t^{''},\omega ^{''})C_{s}(t^{'},\omega ^{'})C_{h}(t^{''}+t^{'}-t,-\omega ^{''}+\omega -\omega ^{'})\,dt^{'}\,dt^{''}\,d\omega ^{\,}d\omega ^{''}}
(15)
G
(
t
,
ω
)
=
1
4
π
2
∬
e
−
j
θ
t
−
j
τ
ω
ϕ
(
θ
,
τ
)
ϕ
(
−
θ
,
τ
)
d
θ
d
τ
{\displaystyle G(t,\omega )={\dfrac {1}{4\pi ^{2}}}\iint {\dfrac {e^{-j\theta t-j\tau \omega }}{\phi (\theta ,\tau )\phi (-\theta ,\tau )}}\,d\theta \,d\tau }
(16)
^ L. Cohen , "Generalized phase-space distribution functions," Jour. Math. Phys. , vol.7, pp. 781–786, 1966.
^ L. Cohen, "Quantization Problem and Variational Principle in the Phase Space Formulation of Quantum Mechanics," Jour. Math. Phys. , vol.7, pp. 1863–1866, 1976.
^ A. J. E. M. Janssen, "On the locus and spread of pseudo-density functions in the time frequency plane," Philips Journal of Research , vol. 37, pp. 79–110, 1982.
^ B. Boashash, 「Theory of Quadratic TFDs」, Chapter 3, pp. 59–82, in B. Boashash, editor, Time-Frequency Signal Analysis & Processing: A Comprehensive Reference, Elsevier, Oxford, 2003; ISBN 0-08-044335-4 .