範疇論中,正合函子(或譯作恰當函子)是保存有限極限函子。在阿貝爾範疇中,這就相當於保存正合序列的函子。

阿貝爾範疇間的正合函子

編輯

 阿貝爾範疇  為加法函子。若對每個正合序列

 

  後得到的序列

 

仍為正合序列,則稱  正合函子

由於正合序列總能拆解為短正合序列,在定義中僅須考慮短正合序列即可。

此外,若對每個短正合序列  ,其像截去尾端零對象後   為正合序列,則稱  左正合函子;類似地,若   為正合序列,則稱  右正合函子。正合性等價於左正合性+右正合性。

一般範疇中的正合函子

編輯

考慮一個函子  

  •  裏存在任意的有限射影極限,且 與有限射影極限交換(即: ),則稱 左正合
  •  裏存在任意的有限歸納極限,且 與有限歸納極限交換(即: ),則稱 右正合
  • 若上述條件同時被滿足,則稱 正合

阿貝爾範疇中,由於任意有限射影(或歸納)極限可以由核(或上核)與有限積(或上積)生成,此時的定義遂回歸到正合序列的定義。

例子

編輯
  • 根據極限的泛性質, 函子無論對哪個變數都是左正合的,這是左正合函子的基本例子。
  •  是一對伴隨函子。若 存在任意有限歸納極限,則 右正合;若存在任意有限射影極限, 左正合。此法可建立許多函子的正合性。
  •  拓撲空間阿貝爾群數學範疇上的整體截面函子   是左正合函子。
  •    為右  -模,則左  -模範疇上的張量積函子   是右正合函子。
  •   為兩個阿貝爾範疇,考慮函子範疇  ,固定一對象  ,對   的「求值」是正合函子。

文獻

編輯
  • Masaki Kashiwara and Pierre Schapira, Categories and Sheaves, Springer. ISBN 3540279490