電化學梯度(英語:electrochemical gradient)是離子運動而產生的電化學電位英語Electrochemical potential[1][2]梯度,通常包括電位梯度和濃度梯度。電化學勢能是一種維持細胞生命活動的勢能。這一能量以化學勢的形式存儲,表現為細胞膜兩側的離子濃度梯度。當穿過可滲透膜的離子濃度不相等時,離子將通過簡單的擴散穿過膜從高濃度區域移動到低濃度區域。 離子還攜帶電荷,在膜上形成電勢。 如果跨膜的電荷分佈不均,則電勢差會產生驅動離子擴散的力,直到膜兩側的電荷平衡[3]

跨半滲透細胞膜的離子濃度和電荷圖。

定義

編輯

電化學梯度是電化學勢的梯度:

 , 其中
  •   離子種類 的化學勢
  •   離子種類 的化合價
  • F, 法拉第常數
  •   局部電勢

概述

編輯

電化學勢在電分析化學和工業應用(如電池和燃料電池)中很重要。 它代表了許多可互換的勢能形式之一,通過它能量可以被保存。

在生物過程中,離子通過擴散作用主動運輸跨膜移動的方向由電化學梯度決定。 在線粒體葉綠體中,質子梯度用於產生化學滲透勢(chemiosmotic potential),也稱為質子動力(proton-motive force)。 這種勢能分別用於通過氧化磷酸化光合磷酸化合成ATP[4]

生物學背景

編輯

通過跨細胞膜的離子運動產生跨膜電勢驅動生物過程,如神經傳導、肌肉收縮激素分泌感覺過程。 按照慣例,典型的動物細胞在細胞內部相對於外部具有 -50 mV 至 -70 mV 的跨膜電位[5]

電化學梯度還在線粒體氧化磷酸化中建立質子梯度方面發揮作用。

離子梯度

編輯
 
Na+-K+-ATPase鈉鉀泵的圖。

由於離子帶電,它們不能通過簡單的擴散穿過膜。 兩種不同的機制可以跨膜運輸離子:主動運輸被動運輸。離子主動轉運的一個例子是Na+/K+-ATPase(NKA)。NKA 催化 ATP 水解為 ADP 和無機磷酸鹽,每水解一個 ATP 分子,三個Na+被轉運到細胞外,兩個K+被轉運到細胞內。這使得細胞內部比外部更負,更具體地產生約-60mV的膜電位 Vmembrane[6]。 被動傳輸的一個例子是通過Na+, K+, Ca2+和Cl通道的離子通道。 這些離子傾向於向下移動它們的濃度梯度。

參見

編輯

參考文獻

編輯
  1. ^ electrochemical potential. 國家教育研究院. [2017-01-04]. (原始內容存檔於2017-01-04). 
  2. ^ The use of the term "Fermi energy" as synonymous with Fermi level (a.k.a. electrochemical potential) is widespread in semiconductor physics. For example: Electronics (fundamentals And Applications)頁面存檔備份,存於互聯網檔案館) by D. Chattopadhyay, Semiconductor Physics and Applications頁面存檔備份,存於互聯網檔案館) by Balkanski and Wallis.
  3. ^ Nelson, David; Cox, Michael. Lehninger Principles of Biochemistry. New York: W.H. Freeman. 2013: 403. ISBN 978-1-4292-3414-6. 
  4. ^ Nath, Sunil; Villadsen, John. Oxidative phosphorylation revisited. Biotechnology and Bioengineering. 2015-03-01, 112 (3): 429–437. ISSN 1097-0290. PMID 25384602. S2CID 2598635. doi:10.1002/bit.25492 (英語). 
  5. ^ Nelson, David; Cox, Michael. Lehninger Principles of Biochemistry. New York: W.H. Freeman. 2013: 464. ISBN 978-1-4292-3414-6. 
  6. ^ Aperia, Anita; Akkuratov, Evgeny E.; Fontana, Jacopo Maria; Brismar, Hjalmar. Na+-K+-ATPase, a new class of plasma membrane receptors. American Journal of Physiology. Cell Physiology. 2016-04-01, 310 (7): C491–C495 [2022-07-03]. ISSN 0363-6143. PMID 26791490. doi:10.1152/ajpcell.00359.2015 . (原始內容存檔於2022-07-03) (英語). 

參考文獻

編輯