組織蛋白酶B
組織蛋白酶B(英文:Cathepsin B)屬於溶酶體半胱氨酸蛋白酶家族,也叫半胱氨酸組織蛋白酶,在細胞內蛋白水解中起重要作用。[5]在人體內的組織蛋白酶B被編碼為CTSB基因。[6][7]組織蛋白酶B的水平在某些癌症、癌前病變和各種其他病理狀況中會上調。[8][9][10][11]
結構
編輯基因
編輯CTSB基因位於染色體8p22,由13個外顯子組成。CTSB基因位於8p22染色體,由13個外顯子組成。CTSB基因的啟動子含有一個富含GC的區域,包含許多SP1位點,類似於管家基因。[12]已發現該基因至少有五個編碼相同蛋白質的轉錄變體。[13]
蛋白質
編輯組織蛋白酶B在粗糙內質網上合成為339個氨基酸的前酶原,具有17個氨基酸的信號肽。[14][15]然後將43/46 kDa的組織蛋白酶原B轉運到高爾基體,在那裏將形成組織蛋白酶B。成熟的組織蛋白酶B由25-26 kDa的重鏈和5 kDa的輕鏈組成,它們通過二硫鍵的二聚體連接。
功能
編輯組織蛋白酶B可增強其他蛋白酶的活性,包括基質金屬蛋白酶、尿激酶(絲氨酸蛋白酶尿激酶纖溶酶原活化劑)和組織蛋白酶D。[16][17]因此,它在細胞外基質成分的蛋白水解、細胞間通訊中斷和減少蛋白酶抑制劑的表達方面具有重要作用。[18]它還參與自噬和分解代謝,有造成腫瘤的惡性發展,並可能參與特異性免疫抵抗。[19]此外,它被確定為具有較小的連接酶活性,能夠通過酰胺鍵連接肽片段。[20]
臨床意義
編輯組織蛋白酶B可以作為多種癌症的潛在有效生物標誌物。.[16][21][22][23][24][25] 組織蛋白酶B的過度表達與侵襲性和轉移性癌症有關。[26]組織蛋白酶B在新陳代謝過程中在肌肉組織中產生。它能夠穿過血腦屏障[27]並且與神經發生有關,特別是在小鼠齒狀回中。多種疾病導致組織蛋白酶B水平升高,從而導致許多病理過程,包括細胞死亡、炎症和有毒肽的產生。專注於神經系統疾病,在癲癇齧齒動物模型中的組織蛋白酶 B 基因敲除研究表明,組織蛋白酶B會導致大量因誘發癲癇而發生的凋亡細胞死亡。[28]
對誘發癲癇發作的老鼠進行組織蛋白酶B抑制劑治療,可改善神經系統評分、學習能力,並大大減少神經元細胞死亡和促凋亡細胞死亡肽。[29]同樣,在創傷性腦損傷老鼠模型中組織蛋白酶B基因敲除和組織蛋白酶B抑制劑治療研究表明,組織蛋白酶B是導致神經肌肉功能障礙、記憶喪失、神經元細胞死亡以及增加促壞死與促凋亡細胞死亡肽的關鍵。[30][31]在缺血性非人類靈長類動物和齧齒動物模型中,組織蛋白酶B抑制劑治療可防止腦神經元顯着喪失,尤其是在海馬體中的神經元。[32][33][34]在肺炎鏈球菌腦膜炎齧齒動物模型中,組織蛋白酶B抑制劑治療極大地改善了感染的臨床過程,並減少了腦部炎症和炎症性白血球介素-1β (IL1-β)和腫瘤壞死因子-α(TNF-α)。[35]
在表達人類前類澱粉蛋白質(APP)的轉基因阿爾茨海默症動物模型中,該模型含有在大多數阿爾茨海默症患者或豚鼠中發現的野生型β-分泌酶位點序列,這是人類野生型APP加工的自然模型, 遺傳上刪除組織蛋白酶B基因或化學上抑制組織蛋白酶B大腦活動導致此類小鼠的記憶缺陷得到顯着改善並降低神經毒性全長β澱粉樣蛋白(1-40/42)和特別有害的焦穀氨酸β澱粉樣蛋白的水平(3-40/42),這被認為是導致疾病的原因。[36][37][38][39][40][41][42]在一個非轉基的因衰老加速的小鼠品系中,它也具有含有野生型β-分泌酶位點序列的APP,用銀杏葉提取出的白果內酯,也可以通過組織蛋白酶B抑制劑降低了β澱粉樣蛋白。[43]此外,siRNA 沉默或化學抑制具有人類野生型 β-分泌酶活性的原代齧齒動物海馬細胞或牛嗜鉻細胞中的組織蛋白酶B,可通過調節分泌途徑減少β澱粉樣蛋白的分泌。[44][45]CTSB基因的突變與熱帶胰腺炎(一種慢性胰腺炎)有關。[46]
相互作用
編輯組織蛋白酶B可以與以下物質產生相互作用:
組織蛋白酶B可以被以下物質抑制:
參見
編輯參考文獻
編輯- ^ 1.0 1.1 1.2 GRCh38: Ensembl release 89: ENSG00000164733、ENSG00000285132 - Ensembl, May 2017
- ^ 2.0 2.1 2.2 GRCm38: Ensembl release 89: ENSMUSG00000021939 - Ensembl, May 2017
- ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Sloane BF. Cathepsin B and cystatins: evidence for a role in cancer progression. Seminars in Cancer Biology. April 1990, 1 (2): 137–52. PMID 2103490.
- ^ Chan SJ, San Segundo B, McCormick MB, Steiner DF. Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs. Proceedings of the National Academy of Sciences of the United States of America. October 1986, 83 (20): 7721–5. Bibcode:1986PNAS...83.7721C. PMC 386793 . PMID 3463996. doi:10.1073/pnas.83.20.7721 .
- ^ Cao L, Taggart RT, Berquin IM, Moin K, Fong D, Sloane BF. Human gastric adenocarcinoma cathepsin B: isolation and sequencing of full-length cDNAs and polymorphisms of the gene. Gene. February 1994, 139 (2): 163–9. PMID 8112600. doi:10.1016/0378-1119(94)90750-1.
- ^ Tong B, Wan B, Wei Z, Wang T, Zhao P, Dou Y, Lv Z, Xia Y, Dai Y. Role of cathepsin B in regulating migration and invasion of fibroblast-like synoviocytes into inflamed tissue from patients with rheumatoid arthritis. Clinical and Experimental Immunology. September 2014, 177 (3): 586–97. PMC 4137842 . PMID 24749816. doi:10.1111/cei.12357.
- ^ Lai WF, Chang CH, Tang Y, Bronson R, Tung CH. Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes. Osteoarthritis and Cartilage. March 2004, 12 (3): 239–44. PMID 14972341. doi:10.1016/j.joca.2003.11.005 .
- ^ Ha SD, Ham B, Mogridge J, Saftig P, Lin S, Kim SO. Cathepsin B-mediated autophagy flux facilitates the anthrax toxin receptor 2-mediated delivery of anthrax lethal factor into the cytoplasm. The Journal of Biological Chemistry. January 2010, 285 (3): 2120–9. PMC 2804368 . PMID 19858192. doi:10.1074/jbc.M109.065813 .
- ^ Yang WE, Ho CC, Yang SF, Lin SH, Yeh KT, Lin CW, Chen MK. Cathepsin B Expression and the Correlation with Clinical Aspects of Oral Squamous Cell Carcinoma. PLOS ONE. 2016, 11 (3): e0152165. Bibcode:2016PLoSO..1152165Y. PMC 4816521 . PMID 27031837. doi:10.1371/journal.pone.0152165 .
- ^ Qian F, Frankfater A, Chan SJ, Steiner DF. The structure of the mouse cathepsin B gene and its putative promoter. DNA and Cell Biology. April 1991, 10 (3): 159–68. PMID 2012677. doi:10.1089/dna.1991.10.159.
- ^ Entrez Gene: CTSB cathepsin B.
- ^ Kirschke H, Barrett AJ, Rawlings ND. Proteinases 1: lysosomal cysteine proteinases. Protein Profile. 1995, 2 (14): 1581–643. PMID 8771190.
- ^ Mort JS, Buttle DJ. Cathepsin B. The International Journal of Biochemistry & Cell Biology. May 1997, 29 (5): 715–20. PMID 9251238. doi:10.1016/s1357-2725(96)00152-5.
- ^ 16.0 16.1 Alapati K, Kesanakurti D, Rao JS, Dasari VR. uPAR and cathepsin B-mediated compartmentalization of JNK regulates the migration of glioma-initiating cells. Stem Cell Research. May 2014, 12 (3): 716–29. PMC 4061617 . PMID 24699410. doi:10.1016/j.scr.2014.02.008.
- ^ Vigneswaran N, Zhao W, Dassanayake A, Muller S, Miller DM, Zacharias W. Variable expression of cathepsin B and D correlates with highly invasive and metastatic phenotype of oral cancer. Human Pathology. August 2000, 31 (8): 931–7. PMID 10987253. doi:10.1053/hupa.2000.9035.
- ^ Yang, Wei-En; Ho, Chuan-Chen; Yang, Shun-Fa; Lin, Shu-Hui; Yeh, Kun-Tu; Lin, Chiao-Wen; Chen, Mu-Kuan. Cathepsin B Expression and the Correlation with Clinical Aspects of Oral Squamous Cell Carcinoma. PLoS ONE. 2016-03-31, 11 (3) [2022-09-12]. ISSN 1932-6203. PMC 4816521 . PMID 27031837. doi:10.1371/journal.pone.0152165. (原始內容存檔於2022-09-12).
- ^ Fais S. Cannibalism: a way to feed on metastatic tumors. Cancer Letters. December 2007, 258 (2): 155–64. PMID 17977647. doi:10.1016/j.canlet.2007.09.014.
- ^ Lambeth, Tyler R.; Dai, Zhefu; Zhang, Yong; Julian, Ryan R. A two-trick pony: lysosomal protease cathepsin B possesses surprising ligase activity. RSC Chemical Biology. 2021, 2 (2): 606–611. ISSN 2633-0679. PMC 8291735 . PMID 34291207. doi:10.1039/D0CB00224K (英語).
- ^ Mirković B, Markelc B, Butinar M, Mitrović A, Sosič I, Gobec S, Vasiljeva O, Turk B, Čemažar M, Serša G, Kos J. Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget. August 2015, 6 (22): 19027–42. PMC 4662473 . PMID 25848918. doi:10.18632/oncotarget.3699.
- ^ Bian B, Mongrain S, Cagnol S, Langlois MJ, Boulanger J, Bernatchez G, Carrier JC, Boudreau F, Rivard N. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Molecular Carcinogenesis. May 2016, 55 (5): 671–87. PMC 4832390 . PMID 25808857. doi:10.1002/mc.22312.
- ^ Bengsch F, Buck A, Günther SC, Seiz JR, Tacke M, Pfeifer D, von Elverfeldt D, Sevenich L, Hillebrand LE, Kern U, Sameni M, Peters C, Sloane BF, Reinheckel T. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene. September 2014, 33 (36): 4474–84. PMC 4139469 . PMID 24077280. doi:10.1038/onc.2013.395.
- ^ Bao W, Fan Q, Luo X, Cheng WW, Wang YD, Li ZN, Chen XL, Wu D. Silencing of Cathepsin B suppresses the proliferation and invasion of endometrial cancer. Oncology Reports. August 2013, 30 (2): 723–30. PMID 23708264. doi:10.3892/or.2013.2496 .
- ^ Yin M, Soikkeli J, Jahkola T, Virolainen S, Saksela O, Hölttä E. TGF-β signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. The American Journal of Pathology. December 2012, 181 (6): 2202–16. PMID 23063511. doi:10.1016/j.ajpath.2012.08.027 .
- ^ Ruan J, Zheng H, Rong X, Rong X, Zhang J, Fang W, Zhao P, Luo R. Over-expression of cathepsin B in hepatocellular carcinomas predicts poor prognosis of HCC patients. Molecular Cancer. 20 February 2016, 15: 17. PMC 4761221 . PMID 26896959. doi:10.1186/s12943-016-0503-9.
- ^ Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metabolism. June 2016, 24 (2): 332–40. PMC 6029441 . PMID 27345423. doi:10.1016/j.cmet.2016.05.025.
- ^ Houseweart MK, Pennacchio LA, Vilaythong A, Peters C, Noebels JL, Myers RM. Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). Journal of Neurobiology. September 2003, 56 (4): 315–27. PMID 12918016. doi:10.1002/neu.10253.
- ^ Ni H, Ren SY, Zhang LL, Sun Q, Tian T, Feng X. Expression profiles of hippocampal regenerative sprouting-related genes and their regulation by E-64d in a developmental rat model of penicillin-induced recurrent epilepticus. Toxicology Letters. February 2013, 217 (2): 162–9. PMID 23266720. doi:10.1016/j.toxlet.2012.12.010.
- ^ Hook GR, Yu J, Sipes N, Pierschbacher MD, Hook V, Kindy MS. The cysteine protease cathepsin B is a key drug target and cysteine protease inhibitors are potential therapeutics for traumatic brain injury. Journal of Neurotrauma. March 2014, 31 (5): 515–29. PMC 3934599 . PMID 24083575. doi:10.1089/neu.2013.2944.
- ^ Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, Tao LY. Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. Journal of Neuroscience Research. October 2010, 88 (13): 2847–58. PMID 20653046. S2CID 2977933. doi:10.1002/jnr.22453.
- ^ Yoshida M, Yamashima T, Zhao L, Tsuchiya K, Kohda Y, Tonchev AB, Matsuda M, Kominami E. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathologica. September 2002, 104 (3): 267–72. PMID 12172912. S2CID 10913622. doi:10.1007/s00401-002-0554-4.
- ^ Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, Yoshioka T, Kominami E, Yamashima T. Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Experimental Neurology. February 1999, 155 (2): 187–94. PMID 10072294. S2CID 22548769. doi:10.1006/exnr.1998.6988.
- ^ Tsubokawa T, Yamaguchi-Okada M, Calvert JW, Solaroglu I, Shimamura N, Yata K, Zhang JH. Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. Journal of Neuroscience Research. September 2006, 84 (4): 832–40. PMID 16802320. S2CID 24194809. doi:10.1002/jnr.20977.
- ^ Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U. The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. Journal of Immunology. November 2011, 187 (10): 5440–51. PMID 22003197. doi:10.4049/jimmunol.1100790 .
- ^ Hook VY, Kindy M, Hook G. Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. The Journal of Biological Chemistry. March 2008, 283 (12): 7745–53. PMID 18184658. doi:10.1074/jbc.m708362200 .
- ^ Hook V, Kindy M, Hook G. Cysteine protease inhibitors effectively reduce in vivo levels of brain beta-amyloid related to Alzheimer's disease. Biological Chemistry. February 2007, 388 (2): 247–52. PMID 17261088. S2CID 34617103. doi:10.1515/bc.2007.027.
- ^ Hook G, Hook VY, Kindy M. Cysteine protease inhibitors reduce brain beta-amyloid and beta-secretase activity in vivo and are potential Alzheimer's disease therapeutics. Biological Chemistry. September 2007, 388 (9): 979–83. PMID 17696783. S2CID 84162059. doi:10.1515/BC.2007.117.
- ^ Hook VY, Kindy M, Reinheckel T, Peters C, Hook G. Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein. Biochemical and Biophysical Research Communications. August 2009, 386 (2): 284–8. PMC 2753505 . PMID 19501042. doi:10.1016/j.bbrc.2009.05.131.
- ^ Hook G, Hook V, Kindy M. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity. Journal of Alzheimer's Disease. 2011, 26 (2): 387–408. PMC 4317342 . PMID 21613740. doi:10.3233/JAD-2011-110101.
- ^ Kindy MS, Yu J, Zhu H, El-Amouri SS, Hook V, Hook GR. Deletion of the cathepsin B gene improves memory deficits in a transgenic ALZHeimer's disease mouse model expressing AβPP containing the wild-type β-secretase site sequence. Journal of Alzheimer's Disease. 2012, 29 (4): 827–40. PMC 4309289 . PMID 22337825. doi:10.3233/JAD-2012-111604.
- ^ Hook G, Yu J, Toneff T, Kindy M, Hook V. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic. Journal of Alzheimer's Disease. 2014, 41 (1): 129–49. PMC 4059604 . PMID 24595198. doi:10.3233/JAD-131370.
- ^ Shi C, Zheng DD, Wu FM, Liu J, Xu J. The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3β pathway mediates bilobalide-induced reduction in amyloid β-peptide. Neurochemical Research. February 2012, 37 (2): 298–306. PMID 21952928. S2CID 5744771. doi:10.1007/s11064-011-0612-1.
- ^ Hook V, Toneff T, Bogyo M, Greenbaum D, Medzihradszky KF, Neveu J, Lane W, Hook G, Reisine T. Inhibition of cathepsin B reduces beta-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate beta-secretase of Alzheimer's disease. Biological Chemistry. September 2005, 386 (9): 931–40. PMID 16164418. S2CID 9038695. doi:10.1515/BC.2005.108.
- ^ Klein DM, Felsenstein KM, Brenneman DE. Cathepsins B and L differentially regulate amyloid precursor protein processing. The Journal of Pharmacology and Experimental Therapeutics. March 2009, 328 (3): 813–21. PMID 19064719. S2CID 7798381. doi:10.1124/jpet.108.147082.
- ^ Tandon RK. Tropical pancreatitis. Journal of Gastroenterology. January 2007,. 42 Suppl 17 (Suppl 17): 141–7. PMID 17238044. S2CID 2796833. doi:10.1007/s00535-006-1930-y.
- ^ van der Stappen JW, Williams AC, Maciewicz RA, Paraskeva C. Activation of cathepsin B, secreted by a colorectal cancer cell line requires low pH and is mediated by cathepsin D. International Journal of Cancer. August 1996, 67 (4): 547–54. PMID 8759615. doi:10.1002/(SICI)1097-0215(19960807)67:4<547::AID-IJC14>3.0.CO;2-4 .
- ^ 48.0 48.1 Pavlova A, Björk I. Grafting of features of cystatins C or B into the N-terminal region or second binding loop of cystatin A (stefin A) substantially enhances inhibition of cysteine proteinases. Biochemistry. September 2003, 42 (38): 11326–33. PMID 14503883. doi:10.1021/bi030119v.
- ^ Estrada S, Nycander M, Hill NJ, Craven CJ, Waltho JP, Björk I. The role of Gly-4 of human cystatin A (stefin A) in the binding of target proteinases. Characterization by kinetic and equilibrium methods of the interactions of cystatin A Gly-4 mutants with papain, cathepsin B, and cathepsin L. Biochemistry. May 1998, 37 (20): 7551–60. PMID 9585570. doi:10.1021/bi980026r.
- ^ Pol E, Björk I. Role of the single cysteine residue, Cys 3, of human and bovine cystatin B (stefin B) in the inhibition of cysteine proteinases. Protein Science. September 2001, 10 (9): 1729–38. PMC 2253190 . PMID 11514663. doi:10.1110/ps.11901.
- ^ Mai J, Finley RL, Waisman DM, Sloane BF. Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells. The Journal of Biological Chemistry. April 2000, 275 (17): 12806–12. PMID 10777578. doi:10.1074/jbc.275.17.12806 .
- ^ Hurley EA, Thorley-Lawson DA. B cell activation and the establishment of Epstein-Barr virus latency. The Journal of Experimental Medicine. December 1988, 168 (6): 2059–75. PMC 2189139 . PMID 2848918. doi:10.1084/jem.168.6.2059.
- ^ Murata, Mitsuo; Miyashita, Satsuki; Yokoo, Chihiro; Tamai, Musaharu; Hanada, Kazunori; Hatayama, Katsuo; Towatari, Takae; Nikawa, Takeshi; Katunuma, Nobuhiko. Novel epoxysuccinyl peptides Selective inhibitors of cathepsin B, in vitro. FEBS Letters. 1991-03-25, 280 (2). doi:10.1016/0014-5793(91)80318-W (英語).