宇稱
在量子力學中,宇稱被描述成宇稱變換中的量,以P (Parity) 表示。宇稱變換(又稱宇稱倒裝),是一個在一個三維座標系中其中一維的翻轉(變換),在三維空間之內,它也可以是一個在x , y , z 軸中同時進行的變換(點反演)
因為宇稱變換會將一個現象轉化為其的鏡像,所以宇稱變換也可以被形容成一個測試左右手座標系的物理現象。在宇稱變換之中,假設變換是在右手座標系,這樣的變換在左手座標系看來就可以被認為是一個身分轉換,反之亦然。 大部分的標準模型在宇稱底下,都呈現宇稱對稱,但弱相互作用卻會破壞這種對稱性。 在任何一維的三維座標系下,P的矩陣的行列式 = -1 ,因此它與一個自轉是不同的。相反地,在一個二維座標系下,兩個在 x , y軸同時進行的變換就不會是一個宇稱變換,而是一個 180° 的轉動。
宇稱的對稱關係
編輯- 在旋轉變換下,經典幾何物體可以被分類為純量、向量或者更高階的張量。在經典物理學中,物理組態需要在所有對稱群下進行在群表示論下的轉換。
- 量子力學則預測在一個完備的內積空間之下的物體狀態不必需通過旋轉群表示進行轉換,而僅需通過射影表示。射影這個詞指出當一個物體脫離了各個階段的狀態,在量子態的狀態下是不可觀察的,接着射影表示便會將這個物體降低成一個普通的表示(在表示論之下)。所有在表示論之下的表示皆是射影表示[來源請求],但所有的映射表示並不是皆是在表示論之下的表示,因此,量子狀態上的射影表示條件遠遠弱於一般狀態上射影表示條件。
- 任何一個群的映射表示都與其普通表示的中心群擴張是同構的。示例 : 三維旋轉群的映射表示( 即 SO(3)自轉群) 即是SU(2)的一般表示。如果旋轉群的映射表示並非是一個表示的話,被稱為旋量[來源請求],所以量子態不僅可以轉化為張量,還可以轉化為旋量。
- 如果將宇稱分類,以下將可以擴展,示例 :
- 純量(P = +1)與贋純量 ( P = -1 ) 兩者的旋轉性是不變的。
- 向量 ( P = -1 )]與贋向量 (P = +1) ,兩者會在旋轉群下轉換為向量。
- 人們可以定義反射,示例 :
其同時具有負行列式以及能形成一個有效的宇稱變換的能力。接着將上述兩者組合抑或持續進行 x, y, z 軸的反射,就能復原先前所提及的特殊宇稱變換。而因為第一個賦予的宇稱變換具有正數的行列式,因此它在偶數維裏不會作用。至於奇數維,只有後者的宇稱變換示例(抑或奇數個座標的坐標系反射)才會成功作用。
- 牛頓第二運動定律中 (如果質量不變)相當於兩個向量,因此在宇稱底下是不變的。重力定律也只涉及向量,因此如前所述,在宇稱底下是不變的。
- 偶(Even)
- 經典力學中的變量主要是純量,不會在空間反演裏改變,示例:
- , 事件發生時的時間
- , 粒子質量
- , 粒子能量
- , 功率
- , 電荷密度
- , 電勢(單位伏特)
- , 電磁場中的能量密度
- , 粒子角動量,此處包含軌域及自旋(贗向量)
- , 磁場(贗向量)
- , 磁場(與 不同)
- , 磁化強度
- , 麥克斯韋應力張量
- 奇(Odd)
- 經典力學中的變量主要是向量,它們會在空間反演裏改變,示例:
量子力學
編輯. 那麼必須有 ,因為整體相位不是一個可觀測量。 由於整體相位屬於量子系統的U(1)內稟對稱性,我們可以將 等價於相位所對應的U(1)連續對稱群的元素 . 我們總可以定義 為我們的宇稱變換算符,而不是 . 從而 並且 有本徵值 . 在宇稱變換下具有 本徵值的波函數被稱為偶函數,而具有 本徵值的被稱為奇函數.
粒子進入外位能的波函數是中心對稱的(位能與空間反演不變量,與原點對稱),要麼保持不變,要麼改變符號:這兩種可能的狀態被稱為波函數的偶數態或奇數態[3]。粒子宇稱守恆定律(對於核的β衰變[4]不成立)指出,如果一個孤立的粒子集合有一個確定的宇稱,那麼宇稱在集合演化過程中保持不變。在球對稱外場中運動的粒子的狀態的奇偶性由角動量決定,粒子狀態由三個量子數定義:總能量、角動量和角動量的投影[3]。