截角正一百二十胞體
截角正一百二十胞體是均勻多胞體之一,由截斷正一百二十胞體的每一個角來創造。
截角正一百二十胞體 | |
---|---|
類型 | 均勻多胞體 |
識別 | |
名稱 | 截角正一百二十胞體 |
參考索引 | 36 |
數學表示法 | |
考克斯特符號 | |
施萊夫利符號 | t0,1{5,3,3} |
性質 | |
胞 | 10 600 (3.3.3) 120 (3.10.10) |
面 | 30 2400 {3} 720 {10} |
邊 | 4800 |
頂點 | 2400 |
組成與佈局 | |
頂點圖 | 稜錐 |
對稱性 | |
考克斯特群 | H4, [3,3,5], order 14400 |
特性 | |
convex | |
截角正一百二十胞體有120個截角十二面體和600個正四面體。它有3120個面,2400個三角形和720個十邊形。它有4800個面:3600個由三個截角十二面體共享,1200個由兩個截角十二面體和一個正四面體共享。每條棱周圍有3個截角十二面體和一個正四面體。它的頂點圖是一個等邊三角形稜錐。
投影
編輯H4 | - | F4 |
---|---|---|
[30] |
[20] |
[12] |
H3 | A2 / B3 / D4 | A3 / B2 |
[10] |
[6] |
[4] |
展開圖 |
球極平面投影的中間部分 (對着一個截角十二面體胞) |
球極平面投影 |
參考文獻
編輯- Kaleidoscopes: Selected Writings of H.S.M. Coxeter (頁面存檔備份,存於互聯網檔案館), editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Four-dimensional Archimedean Polytopes (頁面存檔備份,存於互聯網檔案館) (German), Marco Möller, 2004 PhD dissertation [1] (頁面存檔備份,存於互聯網檔案館) m58 (頁面存檔備份,存於互聯網檔案館) m59 (頁面存檔備份,存於互聯網檔案館) m53 (頁面存檔備份,存於互聯網檔案館)
- Convex uniform polychora based on the hecatonicosachoron (120-cell) and hexacosichoron (600-cell) - Model 36, 39, 41, George Olshevsky.
- Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org. o3o3x5x - thi, o3x3x5o - xhi, x3x3o5o - tex
- Four-Dimensional Polytope Projection Barn Raisings (頁面存檔備份,存於互聯網檔案館) (A Zometool construction of the truncated 120-cell), George W. Hart