黑格納數(Heegner number)指滿足以下性質,非平方數的正整數:其虛二次域Q(√−d)的類數為1,亦即其整數環唯一分解整環[註解 1][1]

黑格納數只有以下九個: 1, 2, 3, 7, 11, 19, 43, 67, 163。(OEIS數列A003173

高斯曾猜測符合上述特性的數只有九個,但未提出證明,1952年庫爾特·黑格納英語Kurt Heegner提出不完整的證明,後來由哈羅德·斯塔克提出完整的證明,即為斯塔克–黑格納定理英語Stark–Heegner theorem

歐拉的質數多項式

編輯

歐拉的質數多項式如下:

 

n = 1, ..., 40時會產生不同的40個質數,這相關於黑格納數163 = 4 · 41 − 1.

歐拉公式, 取值為1,... 40和以下的多項式

 

 取值0,... 39時等效,而Rabinowitz[2]證明了

 

 時,多項式為質數的充份必要條件為其判別式 等於負的黑格納數。

(若代入 會得到 一定不是質數,因此最大值只能取到 

1, 2和3不符合要求,因此符合條件的黑格納數為 ,也就表示可以讓歐拉公式產生質數的p為 ,這些數字被弗朗索瓦·勒·利奧奈英語François Le Lionnais稱為歐拉的幸運數英語lucky numbers of Euler[3]

拉馬努金常數

編輯

拉馬努金常數是 的值,是超越數[4],但非常接近整數

 

這個數字是在1859年由數學家夏爾·埃爾米特發現[5],在1975年愚人節的《科學美國人[6],《數學遊戲》的專欄作家馬丁·加德納故意聲稱這個數字其實是整數,而印度數學天才斯里尼瓦瑟·拉馬努金也預測了這個數很接近整數,因此以他的名字來命名。

這個巧合可以用j-invariant英語j-invariant複數乘法英語complex multiplicationq展開來表示。

註解

編輯
  1. ^ Q(√−d)的整數環為唯一分解整環,也就表示Q(√−d)的數字都只有一種因數分解方式,例如Q(√−5)的整數環不是唯一分解整環,因為6可以以兩種方式在   中表成整數乘積:  

參考資料

編輯
  1. ^ Conway, John Horton; Guy, Richard K. The Book of Numbers. Springer. 1996: 224. ISBN 0-387-97993-X. 
  2. ^ Rabinowitz, G. "Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern." Proc. Fifth Internat. Congress Math. (Cambridge) 1, 418–421, 1913.
  3. ^ Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.
  4. ^ Weisstein, Eric W. (編). Transcendental Number. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語).  gives  , based on Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495–512, 1974. English translation in Math. USSR 8, 501–518, 1974.
  5. ^ Barrow, John D. The Constants of Nature. London: Jonathan Cape. 2002. ISBN 0-224-06135-6. 
  6. ^ Gardner, Martin. Mathematical Games. Scientific American (Scientific American, Inc). April 1975, 232 (4): 127. 

外部連結

編輯