缰核habenula,拉丁语中habena表示缰绳)是位于脊椎动物丘脑背侧的一个体积较小的双侧核团,其体积小于一粒豌豆,形状细长。其与第三脑室接壤,位于松果体前面。[1]

缰核
缰核(红色)位于松果体或丘脑前面的位置。
如图,缰核(蓝色)位于松果体(红色)前面。
标识字符
MeSHD019262
NeuroNames英语NeuroNames294
NeuroLex英语NeuroLex IDbirnlex_1611
TA98A14.1.08.003
TA25662
FMAFMA:62032
神经解剖学术语英语Anatomical terms of neuroanatomy

尽管缰核十分微小,但每个缰核都分为两个不同的区域:内侧缰核 (MHb) 和外侧缰核 (LHb),两者都具有不同的神经元群、传入纤维和传出纤维。[2][3] 内侧缰核可以再分为五个亚核,而外侧缰核则可分为四个亚核。[4]研究显示内侧缰核及外侧缰核形态的复杂性,内侧缰核不同的传入纤维分别投射到不同的亚核。[5]内外侧缰核之间不同的基因表现使两个区域有不同的功能。[6]

缰核是脊椎动物演化中的保守结构,哺乳动物的缰核是高度对称的,而鱼类两栖类爬虫类的缰核在大小、分子组成及连接方面都极不对称。[1]缰核是边缘系统通路中一个主要组成部分,[1]缰核和脚间核英语interpeduncular nucleus之间的后屈束英语fasciculus retroflexus路径是发育中的大脑中首先形成的主要神经束之一。[1]

缰核是连接前脑区域和中脑区域的中央结构,为情绪和感觉处理整合的枢纽或交点,[2]它整合来自边缘系统、感官和基底核的讯息来做出适当且有效的反应措施。[5]缰核参与单胺神经传导物质的调节,特别是多巴胺和血清素,[2][3]这两种神经传导物质都与焦虑症和回避行为密切相关。[2]缰核的功能也涉及动机、情绪、学习以及痛觉[2]内侧缰核在忧郁、压力、记忆和尼古丁戒断中发挥重要作用,也在古柯碱、安非他命和酒精成瘾中发挥重要作用。[6]内侧缰核表现出高水平的烟碱型乙酰胆碱受体 (nAChR),其参与多种形式的成瘾。[6]

解剖学

编辑

每个缰核都分为内侧及外侧两个部分,研究显示内侧缰核可以再分为五个亚核,而外侧缰核则可分为四个亚核。[4] 左右缰核由缰连合相连接,松果体附着于脑部此区域。[7]

外侧缰核

编辑

外侧缰核主要的传入区域是外侧视前区英语preoptic area、腹侧苍白球英语pallidum、外侧下丘脑、内侧缰核和苍白球的内部。[8]外侧缰核中的神经元是“负向奖励”的,因为它们会被与不愉快事件、奖赏的缺乏或惩罚的存在相关的刺激活化。[9] 外侧缰核的奖励讯息来自苍白球内部。[10]

外侧缰核的输出作用于多巴胺能区域、血清素区域及胆碱能区域[8]此输出抑制黑质致密部和腹侧被盖区的多巴胺神经元,外侧缰核的活化与其失去活性相关,相反的,外侧缰核的失活也与其活化相关。[11]外侧缰核的功能是抵抗外侧被盖核在获得回避反应时的作用,但在形成记忆、动机或执行时,不会对回避反应起作用。[12] 研究表明,外侧缰核可能在决策中发挥至关重要的作用,[13]研究也表明,外侧缰核活性异常和忧郁症之间存在关联。[14]

内侧缰核

编辑

内侧缰核接收来自后部透明中隔英语septum pellucidumBroca氏对角带英语diagonal band of Broca,外侧缰核接收来自外侧下丘脑伏隔核、苍白球内侧部、腹侧苍白球和Broca氏对角带的传入讯号。[8] 整体而言,这个复杂互连的区域是背侧间脑传导系统英语dorsal diencephalic conduction system(DDCS)的一部分,负责将讯息从边缘系统传递到中脑后脑内侧前脑[15][16]

内侧缰核的输入来自各个区域并携带许多不同的化学物质。传入区域包括间隔核英语septal nuclei、来自腹侧被盖区束间核的多巴胺能输入,来自蓝斑核的去甲肾上腺素能输入以及来自Broca对角带的GABA能输入。内侧缰核将麸胺酸P物质乙酰胆碱的输出通过脚间核发送到导水管周围灰质以及松果体。[17][18]

不对称性

编辑

Nikolaus Goronowitsch[7]在1883年发现了缰核的不对称性,许多物种皆展现了缰核神经元左右不对称的分化。[7]在许多鱼类两栖动物中,一侧的缰核明显比另一侧大,并且更好地组织成背侧间脑中的不同核。这种分化的侧面(无论是左侧较发达还是右侧较发达)因物种而异。而鸟类哺乳类的两个缰核都比较对称,并且每侧都由内侧核和外侧核组成,在鱼类和两栖动物中分别相当于背侧缰核和腹侧缰核。[19][8][20]

嗅觉编码

编辑

在一些鱼(七鳃鳗硬骨鱼)中,僧帽细胞英语mitral cell(主要嗅觉神经元)轴突以不对称的方式专门投射到缰核的右半球,这表示背侧缰核在功能上不对称,主要是右半球的气味反应。 研究还表明,即使没有嗅觉刺激,背侧缰核神经元也会自发性活跃。 这些自发性活动的背侧缰核神经元被组织成功能簇,旨在控制嗅觉反应。

功能

编辑

这个核团被认为参与单胺类神经传导物质,如多巴胺血清素的调节。[21][22]

缰核参与疼痛处理、生殖行为、营养、睡眠-觉醒周期、压力反应和学习。近期使用功能性磁振造影[23]和单一单元电生理学[11]的演示将外侧缰核的功能与奖励处理紧密联系起来,特别是在编码负回馈或负奖励方面。Matsumoto(松本)和Hikosaka(彦坂)在2007年提出,大脑中的奖励和负面奖励信息可能通过外侧缰核、基底神经节和单胺能(多巴胺和血清素)系统之间的相互作用加以详细说明,并且外侧缰核可能在这种整合功能中发挥关键作用。[11] 其后Bromberg-Martin等人于2011年强调,除了正向和负向奖励预测错误之外,外侧缰核中的神经元还发出正向和负向资讯预测错误讯号。[24]

与忧郁症的关联

编辑

患有重度忧郁症的患者,内侧和外侧缰核的体积均减少,右侧神经元细胞数量也减少,[25]这种变化在精神分裂症患者中不会出现。[25]外侧缰核的主要传入束(即丘脑髓纹)的深部脑刺激已被用于治疗严重、迁延且难以治疗的忧郁症。[26][27]

在动物研究中,外侧缰核的NMDA受体依赖性爆发与忧郁症有关,[28]并且已经证明,全身麻醉剂氯胺酮能当作受体拮抗剂来阻止这种放电。[29]氯胺酮在人类中显示出快速作用的抗忧郁作用(剂量为0.5毫克/体重/公斤)后,已成为许多研究的主题。[30]

动机和成瘾

编辑

近期对缰核的研究已经开始将结构与有机体当前的情绪、动机感和奖励识别联系起来。[31] 外侧缰核原先被认为是一种“反奖励”讯号,但后来的研究表明外侧缰核有助于识别偏好、帮助大脑区分潜在的行动和随后的动机决策。[32] 在一项使用巴甫洛夫条件反射模型的研究中,结果显示缰核反应增加,[33] 这种增加与惩罚(即电击)相关的条件刺激同时发生。[33] 因此,研究人员推测,若外侧缰核的抑制或损伤导致无法处理此类讯息,则可能导致随机动机行为。[32][33]外侧缰核对于理解奖励和动机关系尤其重要,因为它与成瘾行为有关,[31] 其抑制多巴胺能神经元,减少多巴胺的释放。[34] 多项动物研究表明,接受奖励与多巴胺浓度升高同时发生,但一旦动物学会了习得关联,多巴胺浓度就会保持升高,只有在奖励被取消时才会降低。[20][22][31][34] 因此,多巴胺浓度只会随着不可预测的奖励和“正预测错误”而增加。[20]此外,去除预期奖励会活化外侧缰核,抑制多巴胺浓度,[20]这项发现解释了为什么成瘾药物与多巴胺浓度升高有关。[20]

尼古丁与烟碱型乙酰胆碱受体

编辑

根据国家药物滥用研究所英语National Institute on Drug Abuse的数据,美国五分之一的可预防的死亡是由烟草的使用引起的。[35]尼古丁是大多数烟草制品中发现的成瘾药物,很容易被身体的血液吸收。[35] 尽管人们容易误解使用烟草和尼古丁具有放松作用,但动物行为测试显示尼古丁具有致焦虑作用。[36] 烟碱型乙酰胆碱受体(nAChR)已被确定为尼古丁活性的主要位点并调节随后的细胞极化。[37]烟碱型乙酰胆碱受体由许多α和β亚基组成,在外侧缰核及内侧缰核中都有发现,研究表明它们可能在成瘾和戒断行为中发挥关键作用。[37][38]

历史

编辑

缰核是一种在3.6亿多年前出现在脊椎动物中的保守结构,[4]安德烈亚斯·维萨留斯于1555年首次描述了缰连合,[39]狄奥多·赫曼·梅涅特则在1872年提到了缰核。[40]

参考来源

编辑
  1. ^ 1.0 1.1 1.2 1.3 Antolin-Fontes, B; Ables, JL; Görlich, A; Ibañez-Tallon, I. The habenulo-interpeduncular pathway in nicotine aversion and withdrawal.. Neuropharmacology. September 2015, 96 (Pt B): 213–22. PMC 4452453 . PMID 25476971. doi:10.1016/j.neuropharm.2014.11.019. 
  2. ^ 2.0 2.1 2.2 2.3 2.4 Antunes, GF; Campos, ACP; Martins, DO; Gouveia, FV; Rangel Junior, MJ; Pagano, RL; Martinez, RCR. Unravelling the Role of Habenula Subnuclei on Avoidance Response: Focus on Activation and Neuroinflammation.. International Journal of Molecular Sciences. 27 June 2023, 24 (13): 10693. PMC 10342060 . PMID 37445871. doi:10.3390/ijms241310693 . 
  3. ^ 3.0 3.1 Boulos, LJ; Darcq, E; Kieffer, BL. Translating the Habenula-From Rodents to Humans.. Biological Psychiatry. 15 February 2017, 81 (4): 296–305. PMC 5143215 . PMID 27527822. doi:10.1016/j.biopsych.2016.06.003. 
  4. ^ 4.0 4.1 4.2 Ables, JL; Park, K; Ibañez-Tallon, I. Understanding the habenula: A major node in circuits regulating emotion and motivation.. Pharmacological Research. April 2023, 190: 106734. PMID 36933754. doi:10.1016/j.phrs.2023.106734 . 
  5. ^ 5.0 5.1 Juárez-Leal, I; Carretero-Rodríguez, E; Almagro-García, F; Martínez, S; Echevarría, D; Puelles, E. Stria medullaris innervation follows the transcriptomic division of the habenula.. Scientific Reports. 16 June 2022, 12 (1): 10118. Bibcode:2022NatSR..1210118J. PMC 9203815 . PMID 35710872. doi:10.1038/s41598-022-14328-1. 
  6. ^ 6.0 6.1 6.2 Viswanath, H; Carter, AQ; Baldwin, PR; Molfese, DL; Salas, R. The medial habenula: still neglected.. Frontiers in Human Neuroscience. 2013, 7: 931. PMC 3894476 . PMID 24478666. doi:10.3389/fnhum.2013.00931 . 
  7. ^ 7.0 7.1 7.2 Guglielmotti, Vittorio; Cristino, Luigia. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Research Bulletin. 2006, 69 (5): 475–488. ISSN 0361-9230. PMID 16647576. S2CID 24786037. doi:10.1016/j.brainresbull.2006.03.010. 
  8. ^ 8.0 8.1 8.2 8.3 Geisler S, Trimble M. The lateral habenula: no longer neglected. CNS Spectrums. June 2008, 13 (6): 484–9. PMID 18567972. S2CID 37331212. doi:10.1017/S1092852900016710. 
  9. ^ Matsumoto M, Hikosaka O. Representation of negative motivational value in the primate lateral habenula. Nature Neuroscience. January 2009, 12 (1): 77–84. PMC 2737828 . PMID 19043410. doi:10.1038/nn.2233. 
  10. ^ Hong S, Hikosaka O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron. November 2008, 60 (4): 720–9. PMC 2638585 . PMID 19038227. doi:10.1016/j.neuron.2008.09.035. 
  11. ^ 11.0 11.1 11.2 Matsumoto M, Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature. June 2007, 447 (7148): 1111–5. Bibcode:2007Natur.447.1111M. PMID 17522629. S2CID 4418279. doi:10.1038/nature05860. 
  12. ^ Shumake J, Ilango A, Scheich H, Wetzel W, Ohl FW. Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area. The Journal of Neuroscience. April 2010, 30 (17): 5876–83. PMC 6632612 . PMID 20427648. doi:10.1523/JNEUROSCI.3604-09.2010. 
  13. ^ Stopper CM, Floresco SB. What's better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nature Neuroscience. January 2014, 17 (1): 33–5. PMC 4974073 . PMID 24270185. doi:10.1038/nn.3587. 
  14. ^ Yang Y, Wang H, Hu J, Hu H. Lateral habenula in the pathophysiology of depression. Curr Opin Neurobiol. February 2018, 48: 90–96. PMID 29175713. doi:10.1016/j.conb.2017.10.024 . 
  15. ^ Beretta, Carlo Antonio; Dross, Nicolas; Gutierrez-Triana, Jose Arturo; Ryu, Soojin; Carl, Matthias. Habenula circuit development: past, present, and future. Frontiers in Neuroscience. 2012-01-01, 6: 51. PMC 3332237 . PMID 22536170. doi:10.3389/fnins.2012.00051 . 
  16. ^ Bianco, Isaac H.; Wilson, Stephen W. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2009-04-12, 364 (1519): 1005–1020. ISSN 0962-8436. PMC 2666075 . PMID 19064356. doi:10.1098/rstb.2008.0213 (英语). 
  17. ^ Lecourtier L, Kelly PH. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neuroscience and Biobehavioral Reviews. January 2007, 31 (5): 658–72. PMID 17379307. S2CID 12856377. doi:10.1016/j.neubiorev.2007.01.004. 
  18. ^ Antolin-Fontes B, Ables JL, Görlich A, Ibañez-Tallon I. The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology. September 2015, 96 (Pt B): 213–22. PMC 4452453 . PMID 25476971. doi:10.1016/j.neuropharm.2014.11.019. 
  19. ^ Hüsken U, Stickney HL, Gestri G, Bianco IH, Faro A, Young RM, Roussigne M, Hawkins TA, Beretta CA, Brinkmann I, Paolini A, Jacinto R, Albadri S, Dreosti E, Tsalavouta M, Schwarz Q, Cavodeassi F, Barth AK, Wen L, Zhang B, Blader P, Yaksi E, Poggi L, Zigman M, Lin S, Wilson SW, Carl M. Tcf7l2 is required for left-right asymmetric differentiation of habenular neurons. Current Biology. October 2014, 24 (19): 2217–27. PMC 4194317 . PMID 25201686. doi:10.1016/j.cub.2014.08.006. 
  20. ^ 20.0 20.1 20.2 20.3 20.4 Hu, Hailan; Cui, Yihui; Yang, Yan. Circuits and functions of the lateral habenula in health and in disease. Nature Reviews Neuroscience. April 2020, 21 (5): 277–295. ISSN 1471-0048. PMID 32269316. S2CID 215411587. doi:10.1038/s41583-020-0292-4 (英语). 
  21. ^ Stephenson-Jones, Marcus; Floros, Orestis; Robertson, Brita; Grillner, Sten. Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proceedings of the National Academy of Sciences of the United States of America. 2011, 109 (3): E164–E173. PMC 3271889 . PMID 22203996. doi:10.1073/pnas.1119348109 . 
  22. ^ 22.0 22.1 Boulos, Laura-Joy; Darcq, Emmanuel; Kieffer, Brigitte Lina. Translating the Habenula—From Rodents to Humans. Biological Psychiatry. 2017-02-15, 81 (4): 296–305. PMC 5143215 . PMID 27527822. doi:10.1016/j.biopsych.2016.06.003. 
  23. ^ Ullsperger M, von Cramon DY. Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. The Journal of Neuroscience. May 2003, 23 (10): 4308–14. PMC 6741115 . PMID 12764119. doi:10.1523/JNEUROSCI.23-10-04308.2003. 
  24. ^ Bromberg-Martin ES, Hikosaka O. Lateral habenula neurons signal errors in the prediction of reward information. Nature Neuroscience. August 2011, 14 (9): 1209–16. PMC 3164948 . PMID 21857659. doi:10.1038/nn.2902. 
  25. ^ 25.0 25.1 Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychological Medicine. April 2010, 40 (4): 557–67. PMID 19671211. S2CID 11799795. doi:10.1017/S0033291709990821. 
  26. ^ Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biological Psychiatry. January 2010, 67 (2): e9–e11. PMID 19846068. S2CID 43590983. doi:10.1016/j.biopsych.2009.08.027. 
  27. ^ Juckel G, Uhl I, Padberg F, Brüne M, Winter C. Psychosurgery and deep brain stimulation as ultima ratio treatment for refractory depression. European Archives of Psychiatry and Clinical Neuroscience. February 2009, 259 (1): 1–7. PMID 19137233. S2CID 27076192. doi:10.1007/s00406-008-0826-7. 
  28. ^ Howe WM, Kenny PJ. Burst firing sets the stage for depression. Nature. February 2018, 554 (7692): 304–305. Bibcode:2018Natur.554..304H. PMID 29446408. doi:10.1038/d41586-018-01588-z . 
  29. ^ Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, Hu H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. February 2018, 554 (7692): 317–322. Bibcode:2018Natur.554..317Y. PMID 29446381. S2CID 3334820. doi:10.1038/nature25509. 
  30. ^ Serafini G, Howland RH, Rovedi F, Girardi P, Amore M. The role of ketamine in treatment-resistant depression: a systematic review. Current Neuropharmacology. September 2014, 12 (5): 444–61. PMC 4243034 . PMID 25426012. doi:10.2174/1570159X12666140619204251.  已忽略未知参数|df= (帮助)
  31. ^ 31.0 31.1 31.2 Fakhoury, Marc; López, Domínguez. The Role of Habenula in Motivation and Reward. Advances in Neuroscience. 
  32. ^ 32.0 32.1 Stopper, Colin M; Floresco, Stan B. What's better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nature Neuroscience. 24 November 2013, 17 (1): 33–35. PMC 4974073 . PMID 24270185. doi:10.1038/nn.3587. 
  33. ^ 33.0 33.1 33.2 Lawson, Rebecca P.; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J.; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P. The habenula encodes negative motivational value associated with primary punishment in humans. Proceedings of the National Academy of Sciences. 2014-08-12, 111 (32): 11858–11863. Bibcode:2014PNAS..11111858L. ISSN 0027-8424. PMC 4136587 . PMID 25071182. doi:10.1073/pnas.1323586111  (英语). 
  34. ^ 34.0 34.1 Hikosaka, Okihide; Sesack, Susan R.; Lecourtier, Lucas; Shepard, Paul D. Habenula: Crossroad between the Basal Ganglia and the Limbic System. Journal of Neuroscience. 2008-11-12, 28 (46): 11825–11829. PMC 2613689 . PMID 19005047. doi:10.1523/jneurosci.3463-08.2008. 
  35. ^ 35.0 35.1 Abuse, National Institute on Drug. Tobacco/Nicotine. 2014-12-16 [2016-11-22] (美国英语). 
  36. ^ Casarrubea, Maurizio; Davies, Caitlin; Faulisi, Fabiana; Pierucci, Massimo; Colangeli, Roberto; Partridge, Lucy; Chambers, Stephanie; Cassar, Daniel; Valentino, Mario. Acute nicotine induces anxiety and disrupts temporal pattern organization of rat exploratory behavior in hole-board: a potential role for the lateral habenula. Frontiers in Cellular Neuroscience. 2015-01-01, 9: 197. PMC 4450172 . PMID 26082682. doi:10.3389/fncel.2015.00197 . 
  37. ^ 37.0 37.1 Zuo, Wanhong; Xiao, Cheng; Gao, Ming; Hopf, F. Woodward; Krnjević, Krešimir; McIntosh, J. Michael; Fu, Rao; Wu, Jie; Bekker, Alex. Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms. Scientific Reports. 2016-09-06, 6: 32937. Bibcode:2016NatSR...632937Z. ISSN 2045-2322. PMC 5011770 . PMID 27596561. doi:10.1038/srep32937 (英语). 
  38. ^ Dao, Dang Q.; Perez, Erika E.; Teng, Yanfen; Dani, John A.; De Biasi, Mariella. Nicotine Enhances Excitability of Medial Habenular Neurons via Facilitation of Neurokinin Signaling. Journal of Neuroscience. 2014-03-19, 34 (12): 4273–4284. PMC 3960468 . PMID 24647947. doi:10.1523/jneurosci.2736-13.2014. 
  39. ^ Turliuc, Dana; Turliuc, Șerban; Cucu, Andrei; Dumitrescu, Gabriela; Costea, Claudia. An entire universe of the Roman world's architecture found in the human skull. Journal of the History of the Neurosciences. 2015-11-19, 26 (1): 88–100. ISSN 0964-704X. PMID 26584250. S2CID 21254791. doi:10.1080/0964704x.2015.1099382. 
  40. ^ Turliuc, Dana; Turliuc, Şerban; Cucu, Andrei; Dumitrescu, Gabriela Florenţa; Cărăuleanu, Alexandru; Buzdugă, Cătălin; Tamaş, Camelia; Sava, Anca; Costea, Claudia Florida. A review of analogies between some neuroanatomical terms and roman household objects. Annals of Anatomy - Anatomischer Anzeiger. 2016, 204: 127–133. ISSN 0940-9602. PMID 26337365. doi:10.1016/j.aanat.2015.07.001. 

外部链接

编辑


  • Jetti SK, Vendrell-Llopis N, Yaksi E. Spontaneous activity governs olfactory representations in spatially organized habenular microcircuits. Current Biology. February 2014, 24 (4): 434–9. PMID 24508164. doi:10.1016/j.cub.2014.01.015 .