此条目可参照英语维基百科相应条目来扩充。 若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记 {{Translated page}} 标签。 |
在数论上,算术函数(或称数论函数)指定义域为正整数、陪域为复数的函数,即。每个算术函数都可视为复数的序列。
最重要的算术函数是积性及加性函数。算术函数的最重要操作为狄利克雷卷积,对于算术函数集,以它为乘法,一般函数加法为加法,可以得到一个阿贝尔环。
而且,由于f*g=0能够推出f=0或g=0,所以这一交换环是整环(Integral Domain),详见GTM164的附录。
(通常不称交换环为阿贝尔环,这一叫法只在群的情形下被普遍使用)