數學中,旋量群 Spin(n) 是特殊正交群 SO(n) 的二重覆疊,使得存在李群的短正合列:
- 。
對 n > 2, Spin(n) 單連通,從而是 SO(n) 的萬有覆疊空間。作為李群 Spin(n) 及其李代數和特殊正交群 SO(n) 有相同的維數 n(n − 1)/2。
Spin(n) 可以構造為克利福德代數 Cℓ(n) 可逆元群的一個子群。Spin(n) 由所有寫成個偶數個單位向量的克利福德乘積的元素生成。對應到 SO(n) 中恰是沿著垂直於這偶數個向量的超平面的反射的複合。
對於不定符號差,旋量群 Spin(p,q) 通過克利福德代數用類似於標準旋量群的方式構造,由能寫成偶數個模+1和偶數個模-1單位向量的克利福德乘積的元素生成。它是一個 SO0(p,q)(不定正交群 SO(p,q) 含單位元連通分支)的連通二重覆疊。Spin(p,q) 的連通性不同作者有不同的約定,此文中取 p+q>2 時連通。不定符號低維時,也有一些巧合同構:
- Spin(1,1) = GL(1,R)
- Spin(2,1) = SL(2,R)
- Spin(3,1) = SL(2,C)
- Spin(2,2) = SL(2,R) × SL(2,R)
- Spin(4,1) = Sp(1,1)
- Spin(3,2) = Sp(4,R)
- Spin(5,1) = SL(2,H)
- Spin(4,2) = SU(2,2)
- Spin(3,3) = SL(4,R)
注意有 Spin(p,q) = Spin(q,p)。
連通且單連通的李群由它們的李代數決定。所以,如果 G 是具有單李代數的連通李群,G′ 是 G 的萬有覆疊,有包含:
-
這裡 Z(G′) 是 G 的中心。這個包含映射和 G 的李代數 完全確定了 G (注意 和 不能完全確定 G,例如 SL(2,R) 和 PSL(2,R) 有相同的李代數和基本群 ,但卻不同構)。
定符號 Spin(n) 對 n > 2 都是單連通的,所以它們是 SO(n) 的萬有覆疊。不定符號時,Spin(p,q) 的極大緊子群是
- 。
這樣我們就可計算出 Spin(p,q) 的基本群:
-
對 ,這意味著映射 由
映到 給出;
對 p=2,q>2,映射由 ;最後,對 p = q = 2, 映到 而 映到 。
- F.Reece Harvey, Spinors and Calibrations, Academic Press, Inc., 1990.
- Pertti Lounesto, Clifford Algebras and Spinors, LMSLNS 239, Cambridge University Press,1997.
- PlanetMath, Spin Groups (頁面存檔備份,存於網際網路檔案館).