超級神岡探測器

中微子探测器

36°25′32.6″N 137°18′37.1″E / 36.425722°N 137.310306°E / 36.425722; 137.310306[1]

超級神岡探測器(英語:Super-Kamiokande,可縮寫為Super-KSK;日語:スーパーカミオカンデ),全名為超級神岡微中子探測實驗Super-Kamioka Neutrino Detection Experiment),是日本東京大學岐阜縣飛驒市神岡町神岡礦山(日語:神岡鉱山)一個深達1000米的廢棄礦中建造的大型微中子探測器。其目標是探測質子衰變[2][3][4][5][6][7][8]以及被設計來尋找太陽、地球大氣的微中子,並觀測銀河系超新星爆發。目前超級神岡的後續項目,更先進的下一代超巨型神岡探測器(英語:Hyper-Kamiokande,可縮寫為HK)目前正在建設中,預計2027年開始蒐集資料。

描述

編輯

超級神岡探測器位於飛驒市神岡町的茂住山1,000米(3,300英尺)的地下。之所以蓋在如此深的地層中是因為要阻隔其他的宇宙射線訊號[9]。該設施主要部分是一個高41.4米、直徑39.3米的不鏽鋼圓柱形的容器,盛有5萬噸100%的超純水,光是填滿就要兩周時間[來源請求]。水箱容量被分成由一個直徑為33.8米(111英尺)和高度為36.2米(119英尺)的不鏽鋼上層結構的內部探測器(ID)區,和包括其餘結構的外部探測器(OD)區。容器的內壁上安裝有11200個光電倍增管,用於探測微中子與水中的氫原子和氧原子的交互作用的後續過程產生的契忍可夫輻射

探測器

編輯

超級神岡(SK)是用來研究從不同的來源微中子契忍可夫輻射的一個探測器,包括太陽,超新星,大氣,和加速器的質子衰變。實驗開始於1996年4月,並於2001年7月停車檢修,這一段時期被稱為「SK-I」階段。由於在維修過程中發生意外事故,實驗在2002年10月繼續,只有原來一半數量的光電倍增管。為了防止再發生意外事故,所有的光電倍增管都被覆蓋的纖維增強塑料(FRP)與丙烯酸的前窗。這一階段是從2002年10月到2005年10月為整個重建而做另一次關閉的階段,被稱為「SK-II」階段。2006年7月,實驗恢復了光電倍增管的完整數目,並在2008年9月停止實驗而做電子設備的升級。這一時期被稱為「SK-III」階段。2008年後的時期被稱為「SK-IV」階段。所有階段和它們的主要特性匯總於表1[10]

 
神岡探測器(KamiokaNDE)的一個模型。
表1
階段 SK-I SK-II SK-III SK-IV
時期 開始 1996年4月 2002年10月 2006年7月 2008年9月
結束 2001年7月 2005年10月 2008年9月 (運行中)
光電倍增管數量 ID 11146 (40%) 5182 (19%) 11129 (40%) 11129 (40%)
OD 1885
抗爆裂容器
OD 分段
前端電子設備 ATM (ID) QBEE
OD QTC (OD)

歷史

編輯

這台探測器最初名為「神岡核子衰變實驗」(KamiokaNDE),於1982年開始建造,1983年完工,圓柱形容器高16米,直徑15.6米,裝有3000噸水和大約1000隻光電倍增管,目的是探測粒子物理學中的一個基本問題——質子衰變。1985年,探測器開始進行擴建,名為神岡核子衰變實驗II期(KamiokaNDE-II),靈敏度大大提高。1987年2月,神岡探測器與美國的探測器共同發現了大麥哲倫雲超新星1987A爆發時產生的微中子,這是人類首次探測到太陽系以外的天體產生的微中子。[11]

儘管神岡探測器最初探測質子衰變的目標始終沒有實現,但卻可以接收來自太陽微中子,並且測量其入射的方向,研究太陽微中子缺失問題。20世紀90年代,神岡觀測台耗資一億美元建造了更大的探測器,名為超級神岡探測器(Super-KamiokaNDE),它的探測物質增加到了 50000 噸高度純淨的水。一句話總結,探測器在各方面都有了長足的改進。超級神岡探測器於1996年開始觀測,其後自1998年起,超級神岡探測器開始發布探測結果。1998年,超級神岡探測器的領導者、日本科學家小柴昌俊發表了測量結果,給出微中子振盪的首個確切證據[12],認為微中子在三種不同「」之間是可以相互轉換的,這也表明微中子是有質量的,而不是粒子物理標準模型中預言的零質量粒子。2002年,超級神岡探測器證實反應爐中產生的微中子發生了振盪。這個探測結果在微中子天文學粒子物理學中具有里程碑式的意義,小柴昌俊因此獲得2002年的諾貝爾物理學獎

2001年11月12日,超級神岡探測器數千隻光電倍增管由於連鎖反應突然爆裂,隨後工作人員重新排列了未損壞的光電倍增管,使其恢復了一部分工作能力,並加上了聚甲基丙烯酸甲酯保護殼,防止其進一步損壞。2005年7月到2006年6月,超級神岡探測器重新安裝了6000隻光電倍增管。

相關研究

編輯

太陽微中子

編輯

太陽的能量來自其內核質子核融合反應,其中4個質子產生1個原子與1個電子微中子。由此反應釋出之微中子被稱作太陽微中子。在太陽中心核融合反應產生的光子需要花上好幾百萬年才能抵達太陽表面,至於太陽微中子則因為與其他物質之交互作用甚弱,僅需8分鐘即可抵達地球。所以,我們可藉由觀測太陽微中子來得知太陽內部之即時狀態,而不需等數百萬年後光子的抵達[13]

在1999年,超級神岡探測器偵測到微中子振盪的強烈證據,成功地解釋了太陽微中子問題。包括太陽在內的80%可見恆星藉由以下反應將轉換為氦並產生能量:

 

其中 電子微中子。因此,包括我們的太陽在內的恆星們是微中子的來源之一。這些電子微中子主要來自質子﹣質子鏈反應而形成較低的質量,至於溫度較低的恆星則會藉由碳氮氧循環反應產生較重的電子微中子。

在1990年代早期,由於Kamioka II與Ga實驗的初始數據的不確定性,沒有任何單一的實驗需要用太陽微中子問題的非天文物理解作解釋。但若同時分析Cl、Kamioka II、以及Ga實驗的數據,會發現一種無法利用微調標準太陽模型(SSM)來解釋的微中子通量模式。而這反過來激勵了新一代的主動偵測器們,包含超級神岡探測器、薩德伯里微中子觀測站、以及Borexino英語Borexino實驗。其中超級神岡探測器可偵測彈性散射 (ES)事件:

 

由於電子微中子散射造成的電流效應,該反應之電子微中子與重「」微中子的相對靈敏度比約為7:1[14]。由於反彈電子之運動方向被限制在絕對前方,微中子的行進方向被保持與反彈電子的方向一致。由此可得 ,其中 表示反彈電子運動方向與太陽方位之間的夾角。這說明了 太陽微中子通量可被計算為:

 

這個預測值與標準太陽模型預測值之比率為:

 [15]

以上結果表明了太陽微中子的缺失。

大氣微中子

編輯

大氣微中子是由原生宇宙線(主要是質子)與地球大氣交互作用產生的衍生宇宙線。我們可將觀測到的大氣微中子分成四類。全部包含事件(Fully contained, FC)之所有路徑皆包含在內層探測器內部,而部分包含事件(partially contained, PC)則有路徑從內層探測器中漏出;緲子向上貫通事件(Upward through-going muons, UTM)產生於探測器底部的岩層,並向上貫穿探測器。緲子向上停止事件(Upward stopping muons, USM)亦產生於探測器底部的岩層,但其路徑停止於內層探測器內部。

微中子觀測數量之理論預測值並不隨天頂角而改變,而是呈一定值。然而,超級神岡探測器於1998年發現,從偵測器下方進來的緲子微中子(產生於地球另一側)被觀測到的數量是從偵測器上方進來的緲子微中子數量的一半。這個結果可被解釋成微中子轉變或震盪至其他種類的未偵測微中子,這個現象被稱作微中子振盪。此發現表示微中子具有有限質量,並暗示著標準模型需要被延伸。微中子在三種「」之間震盪,而且各種微中子皆有其靜止質量[9]。於2004年的進一步分析顯示,事件發生率是長度除以能量的函數,並有著正弦函數的對應關係,確認了微中子震盪理論[16]

K2K實驗

編輯

K2K實驗英語K2K experiment是一個從1999年6月進行至2004年11月的微中子實驗。該實驗用於確認超級神岡探測器對緲子微中子震盪的觀測數據,並首次在輻射源與偵測器皆受控制的情況之下得出了緲子微中子震盪的正面測量結果。超級神岡探測器在該次實驗計畫的重要角色為「遠偵測器」。K2K實驗的第二代計畫為T2K實驗

T2K實驗

編輯

T2K實驗英語T2K experimentTokai to Kamioka東海神岡之意)是一個由日本美國俄羅斯等11國參與的國際性合作微中子實驗[17]。T2K實驗的目標在於進一步了解微中子振盪的各項參數性質。T2K實驗尋找從緲子微中子轉變為電子微中子的震盪,並在2011年6月宣佈了首次實驗觀測證據[18]。超級神岡探測器在該次實驗計畫的角色為「遠偵測器」。超級神岡探測器將記錄高能微中子與水交互作用所產生的緲子電子契忍可夫輻射

質子衰變

編輯

標準模型中,質子被假設為絕對穩定。然而,一些大統一理論的候選理論(GUTs)預測質子可以衰變為較輕的高能帶電粒子,例如電子緲子π介子等。神岡探測器可協助排除一些候選理論。超級神岡探測器是現有最大的用於觀測質子衰變的偵測器。

諾貝爾物理學獎

編輯

超級神岡探測器製造了數個諾貝爾物理學獎等級的成果,例如小柴昌俊(2002年)以及梶田隆章(2015年)。戶塚洋二的貢獻和梶田隆章相仿,但他在2008年去世,而諾貝爾獎不追認已經逝世的人。小柴、戶塚、梶田三人為師徒關係,並為超級神岡探測器之共同創建者[19]

2015年10月6日,梶田隆章表示:「雖然結果上是我獲得了諾貝爾獎...(中略)...我認為我的『老師』的功勞更為重要。」韓國《朝鮮日報》指出,此處的「老師」就是已過世的戶塚洋二。戶塚被認為是「小柴最優秀的學生」[20]。小柴昌俊曾表示,若戶塚洋二能再多活十八個月,必能得獎[19]

大眾文化中的超級神岡探測器

編輯

超級神岡探測器是德國攝影家安德烈斯·古爾斯基於2007年的作品《Kamiokande》之主題[21]。該探測器亦成為美國科學紀錄片《宇宙大探索》的主題之一。

成果

編輯

在1987年2月,一場超新星爆發SN1987A出現在大麥哲倫星系。在此次事件中,超級神岡探測器第一次偵測到超新星微中子。超級神岡探測器對這些微中子偵測到了11場事件。這次觀測證實了超新星爆發理論的正確性,並開啟了微中子天文學[22]

1998年,超級神岡探測器首次發現了微中子震盪的強烈證據,其觀測到了緲子微中子轉變為陶子微中子的現象[23],這顯示微中子具有質量。梶田隆章在該年的「微中子物理學・宇宙物理學國際會議」上發表該結果[24],並因此研究獲得2015年的諾貝爾物理學獎[8][25][26]

超級神岡探測器所得之數據對質子平均生命期與其他罕見衰變模式以及微中子性質做出了限制,例如質子衰變成K介子的生命期上限為5.9×1033[27]

參見

編輯

參考文獻

編輯
  1. ^ S. Fukuda; et al, The Super-Kamiokande detector, Nuclear Instruments and Methods in Physics Research, April 2003, A501 (2–3): 418–462, Bibcode:2003NIMPA.501..418F, doi:10.1016/S0168-9002(03)00425-X 
  2. ^ The official Super-Kamiokande home page. [2012-07-24]. (原始內容存檔於2021-03-24). 
  3. ^ American Super-K home page. [2004-01-30]. (原始內容存檔於2004-01-30). 
  4. ^ Pictures and illustrations. [2012-07-24]. (原始內容存檔於2017-12-26). 
  5. ^ Details about the accident on November 12, 2001. [2012-07-24]. (原始內容存檔於2004-08-07). 
  6. ^ Official report on the accident (in PDF format) (PDF). [2012-07-24]. (原始內容 (PDF)存檔於2018-04-22). 
  7. ^ Logbook entry of first neutrinos seen at Super-K generated at KEK. [2012-07-24]. (原始內容存檔於2012-08-09). 
  8. ^ 8.0 8.1 FOCUS/東京大學梶田隆章 顛覆證「微中子」. TVBS. 2015-10-07 [2015-10-13]. (原始內容存檔於2015-10-13). 
  9. ^ 9.0 9.1 陳勁豪. 【時事焦點】2015諾貝爾物理獎:帶有質量的微中子. 國立臺灣大學科學教育發展中心. 2015-10-06 [2015-10-28]. (原始內容存檔於2020-09-27) (中文(臺灣)). 
  10. ^ K. Abe; et al, Calibration of the Super-Kamiokande detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 11 February 2014, 737: 253–272, Bibcode:2014NIMPA.737..253A, arXiv:1307.0162 , doi:10.1016/j.nima.2013.11.081 
  11. ^ 30 years after the detection of SN1987A neutrinos. Super-Kamiokande. 2017-02-23 [2017-04-14]. (原始內容存檔於2017-04-14) (英語). 
  12. ^ Fukuda, Y.; et al. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters. 1998, 81 (8): 1562–1567. arXiv:hep-ex/9807003 . doi:10.1103/PhysRevLett.81.1562. 
  13. ^ The official Super-Kamiokande home page/research. [2015-10-09]. (原始內容存檔於2016-04-13). 
  14. ^ A.B. Balantekin; et al, Neutrino oscillations, Progress in Particle and Nuclear Physics, July 2013, 71: 150–161, Bibcode:2013PrPNP..71..150B, arXiv:1303.2272 , doi:10.1016/j.ppnp.2013.03.007 
  15. ^ J.N Bahcall; S Basu; M.H Pinsonneault, How uncertain are solar neutrino predictions?, Phys. Lett. B, 1998, 433: 1–8, Bibcode:1998PhLB..433....1B, arXiv:astro-ph/9805135 , doi:10.1016/S0370-2693(98)00657-1 
  16. ^ The Super-Kamiokande Homepage. [2015-10-12]. (原始內容存檔於2020-02-17). 
  17. ^ National Contacts. The T2K Experiment. [2015-10-09]. (原始內容存檔於2020-05-29). 
  18. ^ The official homepage of T2K experiment. [2015-10-09]. (原始內容存檔於2016-05-24). 
  19. ^ 19.0 19.1 編譯林翠儀、記者湯佳玲. 梶田隆章 年底可望再度來台. 自由時報. 2015-10-07 [2015-10-13]. (原始內容存檔於2015-10-13). 
  20. ^ 日本的21名诺贝尔获奖者的秘密 韩国之眼 朝鲜日报网 > 新闻 > 国际·经济. [2015-10-08]. (原始內容存檔於2015-12-10). 
  21. ^ May 2007, WM Issue #3: ANDREAS GURSKY @ MATTHEW MARKS GALLERY. whitehotmagazine.com. 2007-06-30 [2015-10-09]. (原始內容存檔於2016-06-05). 
  22. ^ Neutrinos from SuperNova Burst. [2015-10-11]. (原始內容存檔於2021-05-01). 
  23. ^ Kearns; Kajita; Totsuka, Detecting Massive Neutrinos, Scientific American, August 1999 
  24. ^ 李樂. 新聞人物:2015年諾貝爾物理學獎兩名獲獎者. BBC中文網. 2015-10-06 [2015-10-13]. (原始內容存檔於2015-10-13). 
  25. ^ 韓政燕; 許敏溶. 諾貝爾獎得主梶田隆章 年底訪台恐生變. 蘋果日報. 2015-10-07 [2015-10-13]. (原始內容存檔於2015-10-12). 
  26. ^ The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald. 國立台灣大學梁次震宇宙學與粒子天文物理學研究中心. 2015-10-07 [2015-10-13]. (原始內容存檔於2015-10-13). 
  27. ^ Search for proton decay via p → νKþ using 260 kiloton · year data of Super-Kamiokande. PHYSICAL REVIEW D 90, 072005. 2014-10-14. 

外部連結

編輯