標準差

統計學名詞

標準差,又稱標準偏差均方差 (英語:standard deviation,縮寫SD,符號σ),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差算术平方根,反映组内個體間的離散程度;標準差與期望值之比為標準離差率。測量到分佈程度的結果,原則上具有兩種性質:

  1. 為非負數值(因為平方後再做平方根);
  2. 與測量資料具有相同單位(這樣才能比對)。
图中红蓝两组数据平均值相同,但标准差不同。红色数据的标准差较蓝色数据的标准差要小。

一個總量的標準差或一個隨機變數的標準差,及一個子集合樣品數的標準差之間,有所差別。其公式如下所列。

標準差的概念由卡爾·皮爾森引入到統計中。

闡述及應用

编辑

簡單來說,標準差是一組數值自平均值分散開來的程度的一種測量觀念。一個較大的標準差,代表大部分的數值和其平均值之間差異較大;一個較小的標準差,代表這些數值較接近平均值。

例如,兩組數的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二個集合具有較小的標準差。

表述“相差 个标准差”,即在  样本(sample)范围内考量。

標準差可以當作不確定性的一種測量。例如在物理科學中,做重複性測量時,測量數值集合的標準差代表這些測量的精確度。當要決定測量值是否符合預測值,測量值的標準差佔有決定性重要角色:如果測量平均值與預測值相差太遠(同時與標準差數值做比較),則認為測量值與預測值互相矛盾。這很容易理解,因為如果測量值都落在一定數值範圍之外,可以合理推論預測值是否正確。

標準差應用於投資上,可作為量度回報穩定性的指標。標準差數值越大,代表回報遠離過去平均數值,回報較不穩定故風險越高。相反,標準差數值越小,代表回報較為穩定,風險亦較小。

母體的標準差

编辑

基本定義

编辑
 

 为平均值。

简化计算公式

编辑

上述公式可以如下代換而簡化:

 

所以:

 

根號裡面,亦即變異數 )的簡易口訣為:「平方的平均」減去「平均的平方」。

母體為随机变量

编辑

隨機變量 的標準差定義為:

 

須注意並非所有隨機變量都具有標準差,因為有些隨機變量不存在期望值。 如果隨機變量  具有相同機率,則可用上述公式計算標準差。

離散随机变量的标准差

编辑

 是由實數 構成的離散隨機變數(英語:discrete random variable),且每個值的機率相等,則 的標準差定義為:

  ,其中  

換成用 來寫,就成為:

  ,其中  

目前為止,與母體標準差的基本公式一致。

然而若每個 可以有不同機率 ,則 的标准差定義為:

  ,其中  

这里,  的数学期望。

连续随机变量的标准差

编辑

 為概率密度 连续随机变量(英語:continuous random variable),則 的标准差定義為:

 

其中  的数学期望:

 

标准差的特殊性质

编辑

对于常数 和随机变量  

 
 
 
其中:
  •  表示随机变量  协方差
  •  表示 ,即  的變異數),對 亦同。

样本的标准差

编辑

在真实世界中,找到一个总体的真实的标准差並不實際。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。

從一大組數值 當中取出一樣本數值組合 ,常定義其樣本標準差

 

样本方差 是对总体方差 无偏估计。之所以 中的分母要用 而不是像总体样本差那样用 ,是因为 自由度 ,这是由于存在约束条件 

範例

编辑

這裡示範如何計算一組數的標準差。例如一群孩童年齡的數值為{5, 6, 8, 9}:

  • 第一步,計算平均值 
 
 (因為集合裏有4個數),分別設為:
 

則平均值為

 
  • 第二步,計算標準差 
 

常態分佈的規則

编辑
 
深藍區域是距平均值小於一個標準差之內的數值範圍,在常態分佈中,此範圍所佔比率為全部數值之68%;兩個標準差之內(深藍,藍)的比率合起來為95%;三個標準差之內(深藍,藍,淺藍)的比率合起來為99.7%。

在實際應用上,常考慮一組數據具有近似於常態分佈的機率分佈。若其假設正確,則約68%數值分佈在距離平均值有1個標準差之內的範圍,約95%數值分佈在距離平均值有2個標準差之內的範圍,以及約99.7%數值分佈在距離平均值有3個標準差之內的範圍。稱為「68-95-99.7法則」。

 
 
 .[1]
 
Percentage within(z)
 
z(Percentage within)

數字比率
標準差值
機率 包含之外比例
百分比 百分比 比例
0.318 639σ 25% 75% 3 / 4
0.674490σ 50% 50% 1 / 2
0.994458σ 68% 32% 1 / 3.125
1σ 68.2689492% 31.7310508% 1 / 3.1514872
1.281552σ 80% 20% 1 / 5
1.644854σ 90% 10% 1 / 10
1.959964σ 95% 5% 1 / 20
2σ 95.4499736% 4.5500264% 1 / 21.977895
2.575829σ 99% 1% 1 / 100
3σ 99.7300204% 0.2699796% 1 / 370.398
3.290527σ 99.9% 0.1% 1 / 1000
3.890592σ 99.99% 0.01% 1 / 10000
4σ 99.993666% 0.006334% 1 / 15787
4.417173σ 99.999% 0.001% 1 / 100000
4.5σ 99.9993204653751% 0.0006795346249% 1 / 147159.5358
3.4 / 1000000 (每一邊)
4.891638σ 99.9999% 0.0001% 1 / 1000000
5σ 99.9999426697% 0.0000573303% 1 / 1744278
5.326724σ 99.99999% 0.00001% 1 / 10000000
5.730729σ 99.999999% 0.000001% 1 / 100000000
6σ 99.9999998027% 0.0000001973% 1 / 506797346
6.109410σ 99.9999999% 0.0000001% 1 / 1000000000
6.466951σ 99.99999999% 0.00000001% 1 / 10000000000
6.806502σ 99.999999999% 0.000000001% 1 / 100000000000
7σ 99.9999999997440% 0.000000000256% 1 / 390682215445

標準差與平均值之間的關係

编辑

一組數據的平均值及標準差常常同時作為參考的依據。从某种意义上说,如果用平均值來考量數值的中心的话,則標準差也就是对统计的分散度的一个“自然”的测度。因为由平均值所得的标准差要小于到其他任何一个点的标准差。較確切的敘述為:設 實數,定義函数

 

使用微積分或者通过配方法,不難算出 在下面情況下具有唯一最小值:

 

几何学解释

编辑

几何学的角度出发,标准差可以理解为一个从 维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值, 。它们可以在3维空间中确定一个 。想像一条通过原点的直线 。如果这组数据中的3个值都相等,则点 就是直线 上的一个点,  的距离为0,所以标准差也为0。若这3个值不都相等,过点 垂线 垂直于   于点 ,则 的坐标为这3个值的平均数:

 

运用一些代数知识,不难发现点 与点 之间的距离(也就是点 到直线 的距离)是 。在 维空间中,这个规律同样适用,把 换成 就可以了。

参考文献

编辑
  1. ^ Eric W. Weisstein. Distribution Function. MathWorld—A Wolfram Web Resource. [2014-09-30]. (原始内容存档于2021-04-02). 

外部链接

编辑