非凸大斜方截半二十面體
在幾何學中,非凸大斜方截半二十面體是一種非凸均勻多面體[5],由62個面、120條邊和60個頂點組成[6],其索引為U67,對偶多面體為大鳶形六十面體[2],具有二十面體群對稱性,[6][7]可以視為大十二面截半二十面體的刻面多面體。[8]在施萊夫利符號中,非凸大斜方截半二十面體可以表示為t0,2{5⁄3,3}或[1]:162[2],在考克斯特—迪肯符号中可以表示為,在威佐夫記號中可以表示為3 5⁄3 | 2[3][4][2]。
類別 | 均勻星形多面體 | |||
---|---|---|---|---|
對偶多面體 | 大鳶形六十面體 | |||
識別 | ||||
名稱 | 非凸大斜方截半二十面體 great rhombicosidodecahedron uniform great rhombicosidodecahedron nonconvex great rhombicosidodecahedron quasirhombicosidodecahedron | |||
參考索引 | U67, C84, W105 | |||
鮑爾斯縮寫 | qrid | |||
數學表示法 | ||||
施萊夫利符號 | t0,2{5⁄3,3} [1]:162[2] | |||
威佐夫符號 | 3 5⁄3 | 2[3][4][2] | |||
性質 | ||||
面 | 62 | |||
邊 | 120 | |||
頂點 | 60 | |||
歐拉特徵數 | F=62, E=120, V=60 (χ=2) | |||
組成與佈局 | ||||
面的種類 | 20個正三角形 30個正方形 12個正五角星 | |||
頂點圖 | 3.4.5/3.4 | |||
對稱性 | ||||
對稱群 | Ih, [5,3], *532 | |||
圖像 | ||||
| ||||
非凸大斜方截半二十面體與小斜方截半二十面体拓樸同構[8],其骨架圖在拓樸學上是等價的[9]。
這個多面體與凸大斜方截半二十面体同名。
性質
编辑非凸大斜方截半二十面體共有62個面、120條邊和60個頂點。[6]在其62個面中,有20個正三角形、30個正方形和12個正五角星[5]:134[10][11],在這些面中,共有12個非凸面和12個自相交面[4]。若排除互相相交與自相交面,作為一個簡單多面體則其外部面共有980個。[12]
非凸大斜方截半二十面體的歐拉示性數為:
- V-E+F = 60 - 120 + (20+12+30) = 2
因此這個多面體同胚於球體。[10]
其60個頂點每個頂點都是2個正方形、一個五角星和一個正三角形的公共頂點,並依照五角星、正方形、三角形、正方形的順序在頂點周圍來列,並形成了一個交叉四邊形,在頂點圖中,這樣的頂角可以用[5/3,4,3,4]或來表示[8]
二面角
编辑非凸大斜方截半二十面體有兩種二面角,分別為正方形面與三角形面的二面角以及正方形與五角星的二面角。
正方形與五角星的二面角約為58.28度[8]或視為反向相接的301.71747度[13]:
尺寸
编辑若非凸大斜方截半二十面體的邊長為單位長,則其外接球半徑為:[14]:1250[2]
分類
编辑非凸大斜方截半二十面體的頂點圖為交叉梯形且具備點可遞的特性,同時,其存在自相交的面,因此非凸大斜方截半二十面體是一種自相交擬擬正多面體(Self-Intersecting Quasi-Quasi-Regular Polyhedra)。自相交擬擬正多面體一共有12種[15],除了小雙三角十二面截半二十面體外,其餘由阿爾伯特·巴杜羅(Albert Badoureau)於1881年發現並描述。[16]
小立方立方八面體 |
大立方截半立方體 |
非凸大斜方截半立方體 |
小十二面截半二十面體 |
大十二面截半二十面體 |
小雙三角十二面截半二十面體 |
大雙三角十二面截半二十面體 |
二十面化截半大十二面體 |
小二十面化截半二十面體 |
大二十面化截半二十面體 |
斜方截半大十二面體 |
非凸大斜方截半二十面體 |
相關多面體
编辑非凸大斜方截半二十面體與截角大十二面體以及6和12複合五角柱共用相同的頂點佈局。同時,其亦與大十二面截半二十面體和大斜方十二面體共用相同的邊佈局。[8]
非凸大斜方截半二十面體 |
大十二面截半二十面體 |
大斜方十二面體 |
截角大十二面體 |
六複合五角柱 |
十二複合五角柱 |
參見
编辑參考文獻
编辑- ^ 1.0 1.1 Wenninger, M.J. Polyhedron Models. Cambridge University Press. 1974 [2021-09-05]. ISBN 9780521098595. LCCN 69010200. (原始内容存档于2021-08-31).
- ^ 2.0 2.1 2.2 2.3 2.4 2.5 Weisstein, Eric W. (编). Uniform Great Rhombicosidodecahedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
- ^ 3.0 3.1 George W. Hart. Uniform Polyhedra. 1996 [2022-07-27]. (原始内容存档于2018-09-19).
- ^ 4.0 4.1 4.2 Vladimir Bulatov. great rhombicosidodecahedron. Polyhedra Collection. [2022-07-27]. (原始内容存档于2021-02-28).
- ^ 5.0 5.1 Gorini, C.A. The Facts on File Geometry Handbook. Facts on File science library. Facts On File, Incorporated. 2003 [2022-07-27]. ISBN 9781438109572. (原始内容存档于2022-07-27).
- ^ 6.0 6.1 6.2 Maeder, Roman. 67: great rhombicosidodecahedron. MathConsult. [2022-07-27]. (原始内容存档于2020-02-17).
- ^ Zvi Har'El. Kaleido Data: Uniform Polyhedron #72. harel.org.il. [2022-07-27]. (原始内容存档于2021-10-22).
- ^ 8.0 8.1 8.2 8.3 8.4 Richard Klitzing. qrid, Polytopes & their Incidence Matrices. bendwavy.org. [2022-07-27]. (原始内容存档于2021-09-21).
- ^ B. D. S. “DON” MCCONNELL. Spectral Realizations of Graphs (PDF). daylateanddollarshort.com. [2022-07-27]. (原始内容 (PDF)存档于2022-04-06).
- ^ 10.0 10.1 David A. Richter. Great Dirhombicosidodecahedron. wmich.edu. [2022-07-27]. (原始内容存档于2018-10-18).
- ^ Polyhedron Category 4: Trapeziverts. polytope.net. (原始内容存档于2021-10-19).
- ^ Robert Webb. Great Rhombicosidodecahedron. software3d.com. [2022-07-30]. (原始内容存档于2022-08-22).
- ^ 13.0 13.1 David I. McCooey. Self-Intersecting Quasi-Quasi-Regular Polyhedra: Uniform Great Rhombicosidodecahedron. [2022-07-27]. (原始内容存档于2018-05-04).
- ^ Weisstein, E.W. CRC Concise Encyclopedia of Mathematics. CRC Press. 2002. ISBN 9781420035223.[失效連結]
- ^ David I. McCooey. Self-Intersecting Quasi-Quasi-Regular Polyhedra. [2022-07-31]. (原始内容存档于2022-08-22).
- ^ Jean Paul Albert Badoureau. Mémoire sur les Figures Isocèles. Journal de l'École polytechnique. 1881, (49): 47–172.