严重急性呼吸综合症冠状病毒2变异株

SARS-CoV-2突變所產生之變異株

本文主要讲述严重急性呼吸综合征冠状病毒2变异株及其发生的错义突变

引发2019冠状病毒病严重急性呼吸综合征冠状病毒2(SARS-CoV-2冠状病毒)容易发生突变而产生变异株,关键病毒蛋白的突变即可能意味着其出现,目前已有多个变异株在世界各地形成并传播。由于病毒的核酸序列变异有可能导致抗原漂移,而使得病毒得以逃避宿主免疫应答,并影响疫苗的效力[1],这种现象称为免疫逃避

已有五种被世界卫生组织认定为值得关注的变异株,它们分别为阿尔法变异株贝塔变异株伽马变异株德尔塔变异株以及奥密克戎变异株

变异株对照表

编辑
最初检出 代号 重要突变 传播 相对于武汉首次发现变体的临床变化
地区 日期 WHO标签[2] PANGO谱系 PHE英语Public Health England变种[3] Nextstrain英语Nextstrain分化枝 传播力 致命性 抗原性
  尼日利亚 2020年8月[4] B.1.1.207 P681H[5] 多国[6] 无变化[5] 无变化[5]
  英国 2020年9月[2][7] 阿尔法[A] B.1.1.7[8] VOC-20DEC-01 20I (V1)[9] N501Y, 69–70del, P681H[5][10][11][12] 全球[7] 增高≈82% (43130%) [13] 正在调查 抗体中和效力略降低[14]
2021年1月[3] B.1.1.7#E484K书面挪威语Lineage B.1.1.7 with E484K[3] VOC-21FEB-02 20I (V1) N501Y, 69–70del, P681H,[5][15] E484K 多国 正在调查 正在调查 正在调查
  丹麦 2020年9月[16] B.1.1.298英语Cluster 5[17] Y453F, 69–70deltaHV[18] 可能灭绝[19]
  南非 2020年5月[2] 贝塔[A] B.1.351[5][8] VOC-20DEC-02 20H (V2)[20] N501Y, K417N, E484K[5][21][22][23][24][25] 多国[26] 增高≈50% (20113%) 无变化[27] 显著降低抗体中和效力[28][29][14][30]
  日本
  巴西
2020年11月[2] 伽马[A] P.1谱系[10][8] VOC-21JAN-02 20J (V3)[31] N501Y, E484K, K417T[5][32][33][34] 美国、巴西等68国[35] 增高≈161% (145174%)[36][C] 致命性增高≈50% (2090%) [37][B][D] 抗体中和效力降低[10]
  印度 2020年10月[2] 德尔塔[A] B.1.617.2[39] VOC-21APR-02 21A[40] T478K, L452R, P681R 多国 增高≈198%[E] 正在调查[F] 抗体中和效力降低[46][30]
  美国 2020年3月[2][47] 艾普西隆 B.1.427,B.1.429[47][48] 21C[49] L452R[48] 多国[48] 增高≈20% (18.6%–24.2%)[50] 恢复期和疫苗接种后血清中和效力降低
  巴西 2020年4月[51] 泽塔 P.2 VUI-21JAN-01 20B/S.484K[52] E484K,D614G,V1176F[53] 多国[51] 单克隆抗体中和效力可能降低,疫苗接种后血清中和效力降低
  英国
  尼日利亚
2020年12月[2][54] 埃塔 B.1.525[55] VUI-21FEB-03 21D[56] E484K, F888L[55] 加拿大、美国、德国等69国[54] 单克隆抗体、恢复期和疫苗接种后血清中和效力可能降低
  菲律宾 2021年1月[2] 西塔 P.3[57] VUI-21MAR-02 21E[58] E484K,N501Y,P681H,141–143del[59] 菲律宾、美国等17国[57]
  印度 2020年10月[2] 卡帕 B.1.617.1[39] VUI-21APR-01 21B[60] E484Q, L452R, P681R[61] 多国 抗体中和效力降低[46]
  秘鲁 2020年8月[62] 拉姆达 C.37[63] VUI-21JUN-01 21G[64] G75V,T76I,247-253del,L452Q,F490S,D614G,T859N[65] 智利、美国、秘鲁等44国[63]
  哥伦比亚 2021年1月 B.1.621 VUI-21JUL-1 21H T95I、Y144S、Y145N、R346K、E484K
N501Y、D614G、P681H、D950N
哥伦比亚、美国等60国
  博茨瓦纳 2021年11月 奥密克戎[A] B.1.1.529 VUI-21NOV-1 21K A67V、Δ69-70、T95I、G142D、Δ143-145、Δ211
L212I、ins214EPE、G339D、S371L、S373P、S375F
K417N、N440K、G446S、S477N、T478K、E484A
Q493K、G496S、Q498R、N501Y、Y505H、T547K
D614G、H655Y、N679K、P681H、N764K
博茨瓦纳、南非等数国 有可能提高[66] 相对于 德尔塔:−63% (6974%) [67] 疫苗对有症状疾病的免疫效果降低[66]
  1. ^ 1.0 1.1 1.2 1.3 1.4 被世界卫生组织列为高关注变异株英语Variant of concern
  2. ^ 2.0 2.1 The reported confidence or credible interval英语credible interval has a low probability, so the estimated value can only be understood as possible, not certain nor likely.
  3. ^ Another study[37] has estimated that P.1 may be ≈100% (50% CrI, 70140%) more transmissible.[B]
  4. ^ Preliminary results from a study in the Southern Region of Brazil found P.1 much more lethal for healthy young people. In groups without pre-existing conditions, the variant was found to be ≈490% (220985%) more lethal for men in the 20-39 age group, ≈465% (1901003%) more lethal for women in the 20-39 age group and ≈670% (4011083%) for women in the 40-59 age group.[38]
  5. ^ About 64% (26113%) more transmissible than the 阿尔法 variant,[41] so 1.64 × 1.82 ≈ 2.98.
  6. ^ 相对2020年初参考病毒株,德尔塔变异株症状发展更快、更严重[42];相对阿尔法变异株,感染者住院率增加约一倍[43][44]。但根据英格兰公共卫生署6月份报告,德尔塔变异株病例死亡率累计0.2%(如只计无注射疫苗则0.13%),而旧有阿尔法变异株则为1.9%[45]

命名法

编辑

目前严重急性呼吸综合征冠状病毒2之变异株有三个常用的命名系统,分别由GISAIDNextstrain英语NextstrainPANGO建立。[2]

2021年5月31日,世界卫生组织宣布为重要变种病毒提供希腊字母标签,为免首先发现变种病毒的国家遭受歧视污名化[68]其中,命名规则在缪变异株后跳过了希腊字母“Nu”和“Xi”这两个字母。据俄罗斯官方电视台《RT》报导,有不具名的WHO官员透露跳过“Nu”是为避免与发音相同的“New”混淆,至于跳过“Xi”则是由于这个字母的姓氏很普遍,为了避免“对区域的污名化”[69][70][71][72]

支序演化树

编辑
 
PANGO命名系统的SARS-CoV-2谱系图
 
随疫情发展,D614G变异英语Variants of SARS-CoV-2#D614G(属B.1演化支[73])逐渐成为目前全球主要传播的严重急性呼吸综合征冠状病毒2类型。[74]

以下为严重急性呼吸综合征冠状病毒2主要变种的支序演化树简化示意图。[75]

SARS-CoV-2
A.1–A.6

WIV04/2019(参考基因组[76]

B.1[74]
B.1.1[94]
B.1.1.1
C.1

C.1.2 (B.1.1.1.1.2)[73][77]

C.36书面挪威语C.36 (B.1.1.1.36)[73]

拉姆达变异株 (C.37谱系, B.1.1.1.37) [62][78][73]

阿尔法变异株(B.1.1.7谱系) [A]

VOC-21FEB-02 (B.1.1.7#E484K)书面挪威语Lineage B.1.1.7 with E484K [3][A]

B.1.1.28

伽马变异株 (P.1谱系) [A]

P.2谱系英语SARS-CoV-2 Zeta variant (泽塔) [79]

P.3谱系英语SARS-CoV-2 Theta variant (西塔)

B.1.1.207书面挪威语Lineage B.1.1.207

B.1.1.318 (AZ.1 - AZ.5)[73][80]

奥密克戎变异株(B.1.1.529谱系)[95][73][87][A]

BA.1[81]

BA.2[81]

BA.2.12 (BA.2.12.1)[82][83]

BA.2.75

BA.2.75.2 [84][85][86]

XBB (与 BA2.10.1 重组而形成) [87][88][89]

CH.1.1 [90]

BA.2.86
→ JN.1

KP.2

KP.3

LB.1

BA.3[87]

BA.4[87]

BA.4.6 [87][91][92]

BA.5

BA.5.1[87]

BA.5.2 (BF.7, BA.5.2.1.7) [87][93]

BA.5.3 (BQ.1, BA.5.3.1.1.1.1.1) [87][94][86][89]

贝塔变异株 (贝塔, B.1.351谱系) [A]

CAL.20C书面挪威语California-koronavarianten (艾普西隆, B.1.427书面挪威语Lineage B.1.427B.1.429书面挪威语Lineage B.1.429) [B]

B.1.525英语SARS-CoV-2 Eta variant (埃塔)

B.1.526英语SARS-CoV-2 Iota variant (约塔)

B.1.617谱系[39][106][107]

B.1.617.1英语SARS-CoV-2 Kappa variant (卡帕)

德尔塔变异株 (B.1.617.2) [96][A]

B.1.617.2.1德语B.1.617#B.1.617.2.1 (德尔塔 Plus, AY.1) [97]

B.1.617.2.4.2 (德尔塔 Plus, AY.4.2) [73][98]

B.1.617.3

B.1.618书面挪威语Lineage B.1.618 [99][100]

缪变异株(B.1.621谱系)[101][102][103][104]

B.1.640 [105][87]

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 高关注变异株英语Variant of concern
  2. ^ 美国疾病控制与预防中心宣布的引发关切的变种英语Variant of concern

关注度之基准

编辑
  1. 需要关注的变异株英语Variant of concern(英语:variant of concern,VOC[108]
  2. 需要留意的变异株英语Variant of interest(英语:variant of interest,VOI[108]
  3. 监视下的变异株英语Variant under monitoring(英语:variant under monitoring,VUM[108]

现阶段的主流变异株

编辑

需要关注的变异株(VOC)

编辑

病毒变异是一个自然随机过程,并引发关切的程度取决于其导致的传染性、发病率、死亡率,及逃避检测、免疫与治疗的风险。目前在世界的主要变异株为最早发现于非洲南部由希腊字母“奥密克戎”标记。

奥密克戎(B.1.1.529谱系)

编辑

B.1.1.529变异株(WHO命名为奥密克戎[109][110][111])是目前变异最多的2019冠状病毒病病毒。据媒体简报会上发布:这个变异株有超过50个突变[112],而单单在刺突蛋白的突变也有32种[110][113][112]

  • 于2021年11月,在非洲南部的博茨瓦纳南非发现[112][114][111]
  • 2021年11月24日,升级为“VUM”等级。
  • 2021年11月26日,再升级为“VOC”等级。
  • 目前变种分支亚型:BA.1(标准亚型)、BA.2、BA.3、BA.4、BA.5,总共超过千种以上的“次分支”、“子代”及“重组”变异株。
目前“VOC-VOI”等级(需要留意)变异株
编辑
  • JN.1
目前“VOC-VUM”等级(监视)变异株
编辑
  • KP.2
  • KP.3
  • KP.3.1.1
  • JN.1.18
  • LB.1
  • XEC

过去的主流变异株

编辑

需要关注的变异株(Previous VOC)

编辑

阿尔法(B.1.1.7谱系)

编辑

B.1.1.7谱系,WHO命名为“阿尔法”,又称VOC 202012/01,并称501Y.V1变种。部分与“N501Y”突变有关。有23个病毒基因变异点。

  • 在2020年9月,首次从英国东南方的肯特郡(Kent)所发现采集的样本中发现[115]
  • 2020年12月18日,升级为“VOC”等级。
  • 2022年3月9日,降级为“Previous VOC”等级。

贝塔(B.1.351谱系)

编辑

B.1.351谱系,WHO命名为“贝塔”,又称501Y.V2变种。与“N501Y”、“K417N”、“E484K”突变有关,与先前的新冠病毒变种相比,501Y.V2变种的传染率增加约50%。[116]有证据表明,501Y.V2变种的刺突蛋白突变E484K可能会影响一些多克隆抗体单克隆抗体的中和作用。当前尚未有证据表明该变种影响2019冠状病毒病的严重程度[117]。。

伽马(P.1谱系)

编辑

P.1谱系,WHO命名为“伽马”,又称501Y.V3变种。包括三个相关突变:“N501Y”、“E484K”和“K417T”。

  • 2020年11月,在巴西发现。
  • 2021年1月2日,在东京国际机场从四名巴西飞抵日本的旅客发现,由日本国立感染症研究所报道[117]
  • 2021年1月11日,升级为“VOC”等级。
  • 2022年3月9日,降级为“Previous VOC”等级。

德尔塔(B.1.617.2谱系)

编辑

B.1.617谱系是2020年10月于印度发现的一种双突变变异株。直到2021年1月前,该变异株的感染人数都寥寥无几。4月时该变异株已经蔓延至超过20个国家,遍及南极洲和南美洲以外的所有大洲。[120][121][122]

在该变异株约15个谱系定义突变中包括刺突蛋白突变D111D(同义突变英语synonymous substitution)、G142D[123]、P681R、E484Q[107]、L452R[124],其中后两个突变可能会影响恢复期血浆单克隆抗体的中和作用。[125]

英国公共卫生部英语Public Health England于5月7日将B.1.617.2列为“高关注变异株英语Variant of concern”,命名为VOC-21APR-02。[96][126]

5月10日WHO称,因为B.1.617较高的传染性,该变异正被列为全球范围内受关切变种[127]。6月1日WHO将受关切变种限定为B.1.617谱系当中的B.1.617.2(德尔塔)变种。[128] 稍后WHO将B.1.617.2命名为“德尔塔”。

5月21日,越南宣布发现一种传播性更高,由德尔塔变异株加上阿尔法变异株上突变的病毒株。[129]6月3日,WHO澄清该病毒株不符合新混合变种的定义,并将其列为带有突变的德尔塔变种。[130]

据报道,德尔塔变异株基本传染数R0大约为6(有说法称其高达8或9)[131],是严重急性呼吸综合征冠状病毒2原始毒株基本传染数的2倍以上。[132]

  • 2021年4月4日,为升级为“VOI”等级。
  • 2021年5月11日,为升级为“VOC”等级。
  • 2022年6月7日,降级为“Previous VOC”等级。

需要留意的变异株(Previous VOI)

编辑

艾普西隆(B.1.427谱系、B.1.429谱系)

编辑

B.1.427谱系、B.1.429谱系,WHO命名为“艾普西隆”,于2020年3月在美国加州首次发现。

  • 2021年3月5日,升级为“VOI”等级。
  • 2021年7月6日,降级为“Previous VOI”等级。

泽塔(P.2谱系)

编辑

P.2谱系,WHO命名为“泽塔”,于2020年4月在巴西里约热内卢首次发现。

  • 2021年3月17日,升级为“VOI”等级。
  • 2021年7月6日,降级为“Previous VOI”等级。

埃塔(B.1.525谱系)

编辑

B.1.525谱系,WHO命名为“埃塔”,于2020年12月在尼日利亚首次发现。

  • 2021年3月17日,升级为“VOI”等级。
  • 2021年9月20日,降级为“Previous VOI”等级。

约塔(B.1.526谱系)

编辑

B.1.526谱系,WHO命名为“约塔”,于2020年11月在美国纽约首次发现。

  • 2021年3月20日,升级为“VOI”等级。
  • 2021年9月20日,降级为“Previous VOI”等级。

西塔(P.3谱系)

编辑

P.3谱系,WHO命名为“西塔”,于2021年1月在菲律宾首次发现。

  • 2021年3月24日,升级为“VOI”等级。
  • 2021年7月6日,降级为“Previous VOI”等级。

卡帕(B.1.617.1)

编辑

B.1.617谱系的三个子谱系之一当中的“B.1.617.1”,WHO命名为“卡帕”,于2020年10月在印度首次发现。

  • 2021年4月4日,升级为“VOI”等级。
  • 2021年9月20日,降级为“Previous VOI”等级。

拉姆达(C.37谱系)

编辑

C.37谱系,WHO命名为“拉姆达”,于2020年8月在秘鲁首次发现。

  • 2021年6月14日,升级为“VOI”等级。
  • 2022年3月9日,降级为“Previous VOI”等级。

缪(B.1.621谱系)

编辑

B.1.621谱系,WHO命名为“缪”,于2021年1月在哥伦比亚首次发现。

  • 2021年8月30日,升级为“VOI”等级。
  • 2022年3月9日,降级为“Previous VOI”等级。

备注

编辑
  1. ^ 台湾疾管署按美国CDC定义分三类,称为:需留意变异株(Variants of Interest, VOI)、高关注变异株(Variants of Concern, VOC)、高冲击变异株(Variant of High Consequence)。

参见

编辑

参考文献

编辑
  1. ^ SARS CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. [2021-03-24]. (原始内容存档于2021-12-08). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 追踪SARS-CoV-2变体. 世界卫生组织. [2021-06-18]. (原始内容存档于2021-12-14). 
  3. ^ 3.0 3.1 3.2 3.3 Variants: distribution of case data, 9 July 2021. GOV.UK. [2021-07-10]. (原始内容存档于2021-07-14) (英语). 
  4. ^ Lineage B.1.1.207. cov-lineages.org. [2021-07-15]. (原始内容存档于2021-07-18). 
  5. ^ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 CDC. Emerging SARS-CoV-2 Variants. Centers for Disease Control and Prevention. [2021-01-04]. (原始内容存档于2021-05-15) (美国英语).    本文含有此来源中属于公有领域的内容。
  6. ^ Lineage B.1.1.207. PANGO lineages. [2021-03-20]. (原始内容存档于2021-01-27). 
  7. ^ 7.0 7.1 Lineage B.1.1.7. PANGO lineages英语Phylogenetic Assignment of Named Global Outbreak Lineages. [2021-05-31]. (原始内容存档于2021-06-07). 
  8. ^ 8.0 8.1 8.2 8.3 Walensky, Rochelle P.; Walke, Henry T.; Fauci, Anthony S. SARS-CoV-2 Variants of Concern in the United States—Challenges and Opportunities. JAMA. 2021-03-16, 325 (11). ISSN 0098-7484. doi:10.1001/jama.2021.2294. 
  9. ^ Variant: 20I (Alpha, V1). covariants.org. [2021-06-28]. (原始内容存档于2021-06-29). 
  10. ^ 10.0 10.1 10.2 ECDC. Risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA - first update (PDF). 欧洲疾病预防控制中心. 2021-01-21 [2021-02-02]. (原始内容存档 (PDF)于2021-02-22). 
  11. ^ Gallagher, James. Coronavirus: UK variant 'may be more deadly'. 英国广播公司新闻. 2021-01-22 [2021-01-22]. (原始内容存档于2021-05-23). 
  12. ^ Chand et al.,"Potential impact of spike variant N501Y" (p. 6).
  13. ^ Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, 缪nday JD; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.. Science. 2021, 372 (6538) [2022-04-03]. PMC 8128288 . PMID 33658326. doi:10.1126/science.abg3055. (原始内容存档于2021-08-27). 
  14. ^ 14.0 14.1 Susceptibility of Circulating SARS-CoV-2 Variants to Neutralization. [2021-06-04]. (原始内容存档于2021-05-06). 
  15. ^ Chand et al. (2020),第6页,Potential impact of spike variant N501Y.
  16. ^ SARS-CoV-2 mink-associated variant strain – Denmark. 世界卫生组织. 2020-11-06 [2021-01-16]. (原始内容存档于2020-11-12). 
  17. ^ Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. PubMed Central. 2021-03-12 [2021-06-10]. (原始内容存档于2021-12-08) (美国英语). 
  18. ^ Lassaunière, Ria. SARS-CoV-2 spike mutations arising in Danish mink and their spread to humans. Statens Serum Institut. 2020-11-11 [2020-11-11]. (原始内容存档于2020-11-10). 
  19. ^ De fleste restriktioner lempes i Nordjylland [most restrictions eased in North Jutland]. Sundheds- og Ældreministeriet. 2020-11-19 [2021-01-16]. (原始内容存档于2021-01-20). Sekventeringen af de positive prøver viser samtidig, at der ikke er påvist yderligere tilfælde af minkvariant med cluster 5 siden den 15. september, hvorfor Statens Serums Institut vurderer, at denne variant med stor sandsynlighed er døet ud. ("With high probability [...] died out") 
  20. ^ Variant: 20H (Beta, V2). covariants.org. [2021-07-04]. (原始内容存档于2021-07-09). 
  21. ^ Lowe, Derek. The New Mutations. In the Pipeline. American Association for the Advancement of Science. 2020-12-22 [2020-12-23]. (原始内容存档于2021-01-29). I should note here that there's another strain in South Africa that is bringing on similar concerns. This one has eight mutations in the Spike protein, with three of them (K417N, E484K and N501Y) that may have some functional role. 
  22. ^ Kupferschmidt, Kai. New coronavirus variants could cause more reinfections, require updated vaccines. Science (American Association for the Advancement of Science). 2021-01-15 [2021-02-02]. doi:10.1126/science.abg6028. (原始内容存档于2021-02-22). 
  23. ^ Coronavirus variants and mutations: The science explained. BBC News. 2021-01-06 [2021-02-02]. (原始内容存档于2021-02-22) (英国英语). 
  24. ^ Brief report: New Variant Strain of SARS-CoV-2 Identified in Travelers from Brazil (PDF) (新闻稿). Japan: NIID (National Institute of Infectious Diseases). 2021-01-12 [2021-01-14]. (原始内容存档 (PDF)于2021-01-15). 
  25. ^ Kupferschmidt, Kai. New mutations raise specter of 'immune escape'. Science. 2021-01-22, 371 (6527): 329–330 [2021-01-25]. PMID 33479129. doi:10.1126/science.371.6527.329. (原始内容存档于2021-05-13). 
  26. ^ B.1.351. PANGO lineages. [2021-03-20]. (原始内容存档于2021-06-09). 
  27. ^ Sruthi S. Notable Variants And Mutation Of SARS-CoV-2. BioTecNika. 2021-02-10 [2021-03-22]. (原始内容存档于2021-04-17). 
  28. ^ Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nature Medicine. 2021-04-14, 27 (5): 917–924. PMID 33772244. doi:10.1038/s41591-021-01318-5 . 
  29. ^ Coronavirus: Sinovac vaccine gives 70 per cent less protection against South African variant, but Hongkongers urged to still get jab. www.scmp.com. 2021-04-20 [2021-04-20]. (原始内容存档于2021-06-06). 
  30. ^ 30.0 30.1 Wall, Emma C; Wu, Mary; Harvey, Ruth; Kelly, Gavin; Warchal, Scott; Sawyer, Chelsea; Daniels, Rodney; Hobson, Philip; Hatipoglu, Emine; Ngai, Yenting; Hussain, Saira; Nicod, Jerome; Goldstone, Robert; Ambrose, Karen; Hindmarsh, Steve; Beale, Rupert; Riddell, Andrew; Gamblin, Steve; Howell, Michael; Kassiotis, George; Libri, Vincenzo; Williams, Bryan; Swanton, Charles; Gandhi, Sonia; Bauer, David LV. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. The Lancet. 2021-06, 397 (10292): 2331–2333. doi:10.1016/S0140-6736(21)01290-3. 
  31. ^ Variant: 20J (Gamma, V3). covariants.org. [2021-06-26]. (原始内容存档于2021-06-30). 
  32. ^ Voloch, Carolina M.; et al. (2020). "Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil"页面存档备份,存于互联网档案馆) full text (see figure 5). Retrieved 15 January 2021. doi:10.1101/2020.12.23.20248598 – via MedRxiv.
  33. ^ Lovett, Samuel. What we know about the new Brazilian coronavirus variant. 独立报 (London). 2021-01-14 [2021-01-14]. (原始内容存档于2021-01-15). 
  34. ^ Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological. 2021-01-12 [2021-01-23]. (原始内容存档于2021-05-20) (英语). 
  35. ^ Lineage P.1. cov-lineages.org. [2021-08-11]. (原始内容存档于2022-01-06). 
  36. ^ Coutinho RM, Marquitti FM, Ferreira LS, Borges ME, da Silva RL, Canton O, et al. Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P.1 variant. medRxiv (Preprint). 2021-03-23: 9 [2021-04-29]. S2CID 232119656. doi:10.1101/2021.03.03.21252706. (原始内容存档于2021-05-03). The new variant was found to be about 2.6 times more transmissible (95% Confidence Interval (CI): 2.4–2.8) than previous circulating variant(s). ... Table 1: Summary of the fitted parameters and respective confidence intervals considering the entire period, November 1 2020-January 31, 2021 maintaining the same pathogenicity of the previous variant. Parameter: Relative transmission rate for the new variant. Estimate: 2.61. 2.5%: 2.45. 97.5%: 2.76. 
  37. ^ 37.0 37.1 Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DS, Mishra S, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021-05-21, 372 (6544): 815–821. ISSN 0036-8075. PMC 8139423 . PMID 33853970. doi:10.1126/science.abh2644 . Within this plausible region of parameter space, P.1 can be between 1.7 and 2.4 times more transmissible (50% BCI, 2.0 median, with a 99% posterior probability of being >1) than local non-P1 lineages and can evade 21 to 46% (50% BCI, 32% median, with a 95% posterior probability of being able to evade at least 10%) of protective immunity elicited by previous infection with non-P.1 lineages, corresponding to 54 to 79% (50% BCI, 68% median) cross-immunity ... We estimate that infections are 1.2 to 1.9 times more likely (50% BCI, median 1.5, 90% posterior probability of being >1) to result in mortality in the period after the emergence of P.1, compared with before, although posterior estimates of this relative risk are also correlated with inferred cross-immunity. More broadly, the recent epidemic in Manaus has strained the city’s health care system, leading to inadequate access to medical care. We therefore cannot determine whether the estimated increase in relative mortality risk is due to P.1 infection, stresses on the Manaus health care system, or both. Detailed clinical investigations of P.1 infections are needed. 
  38. ^ Freitas AR, Lemos DR, Beckedorff OA, Cavalcanti LP, Siqueira AM, Mello RC, et al. The increase in the risk of severity and fatality rate of covid-19 in southern Brazil after the emergence of the Variant of Concern (VOC) SARS-CoV-2 P.1 was greater among young adults without pre-existing risk conditions (Preprint). 2021-04-19 [2021-05-27]. doi:10.1101/2021.04.13.21255281. (原始内容存档于2021-06-04) –通过medRxiv. Female 20 to 39 years old, with no pre-existing risk conditions, were at risk of death 5.65 times higher in February (95% CI, 2.9-11.03; p <0.0001) and in the age group of 40 and 59 years old, this risk was 7.7 times higher (95% CI, 5.01-11.83; p <0.0001) comparing with November-December. ... The heterogeneity observed between the age groups was greater when we analyzed the subgroup of the population without preexisting risk conditions where we found that the CFR in the female sex in the second wave was 1.95 times (95% CI, 1.38-2.76) the CFR of the first wave in the population over 85 years old and was 7.7 times (95% CI, 5.01-11.83; p < 0.0001) in the population between 40 and 59 years old. In the male population without previous diseases, the CFR in the second wave was 2.18 (95% CI, 1.62-2.93) times the CFR of the first wave in the population over 85 years old and 5.9 (95% CI, 3.2-10.85; p < 0, 0001) higher in the range between 20 and 39 years old. 
  39. ^ 39.0 39.1 39.2 PANGO lineages. cov-lineages.org. [2021-04-17]. (原始内容存档于2021-06-03). 
  40. ^ Variant: 21A (Delta). covariants.org. [2021-06-29]. (原始内容存档于2021-07-29). 
  41. ^ SARS-CoV-2 variants of concern and variants under investigation in England, technical briefing 15 (PDF) (Briefing). Public Health England. 2021-06-11 [2021-06-15]. (原始内容存档 (PDF)于2021-07-04). 
  42. ^ In China's latest outbreak, doctors say the infected get sicker, faster.. [2021-06-12]. (原始内容存档于2022-03-24). 
  43. ^ SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. [2021-06-14]. (原始内容存档于2021-06-15). 
  44. ^ Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. [2021-08-28]. (原始内容存档于2022-03-31). 
  45. ^ SARS-CoV-2 variants of concern and variants under investigation in England Technical Briefing 18 (PDF). Public Health England: 11. 2021-07-09 [2021-07-19]. (原始内容存档 (PDF)于2021-07-23) (英语). 
  46. ^ 46.0 46.1 Yadav, PD; Sapkal, GN; Abraham, P; Ella, R; Deshpande, G; Patil, DY; Nyayanit, DA; Gupta, N; Sahay, RR; Shete, AM; Panda, S; Bhargava, B; Mohan, VK. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees.. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2021-05-07. PMID 33961693. doi:10.1093/cid/ciab411. 
  47. ^ 47.0 47.1 Lineage B.1.427. cov-lineages.org. [2021-07-15]. (原始内容存档于2021-07-29). 
  48. ^ 48.0 48.1 48.2 Lineage B.1.429页面存档备份,存于互联网档案馆cov-lineages.org, accessed 19 March 2021, Graphic shows B.1.429 detected in the USA, Mexico, Canada, the UK, France, Denmark, Australia, Taiwan, Japan, South Korea, Australia, New Zealand, Guadeloupe, and Aruba
  49. ^ Variant: 21C (Epsilon). covariants.org. [2021-07-02]. (原始内容存档于2021-07-09). 
  50. ^ Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. MedRxiv (Preprint). March 2021. PMC 7987058 . PMID 33758899. doi:10.1101/2021.03.07.21252647. 
  51. ^ 51.0 51.1 Lineage P.2. PANGO lineages. [2021-06-04]. (原始内容存档于2021-04-28). 
  52. ^ Variant: S:E484. covariants.org. [2021-07-17]. (原始内容存档于2021-07-19). 
  53. ^ Spike Variants: Zeta variant, aka P.2. covdb.stanford.edu. Stanford University Coronavirus Antiviral & Resistance Database. [2021-07-18]. (原始内容存档于2021-06-30). 
  54. ^ 54.0 54.1 B.1.525. PANGO lineages. [2021-03-20]. (原始内容存档于2021-06-22). 
  55. ^ 55.0 55.1 B.1.525. Rambaut Group, University of Edinburgh. PANGO Lineages. 2021-02-15 [2021-02-16]. (原始内容存档于2021-06-22). 
  56. ^ Variant: 21D (Eta). covariants.org. [2021-07-05]. (原始内容存档于2021-07-31). 
  57. ^ 57.0 57.1 Lineage P.3. cov-lineages.org. [2021-06-06]. (原始内容存档于2021-05-05). 
  58. ^ Genomic epidemiology of novel coronavirus - Global subsampling. Nextstrain. [2021-07-21]. (原始内容存档于2021-07-22). 
  59. ^ PGC SARS-CoV-2 Bulletin No. 7: Detection and characterization of a new SARS-CoV-2 lineage P.3, with spike protein mutations E484K, N501Y, P681H and LGV 141–143 deletion, from samples sequenced through the intensified UP-PGC, UP-NIH and DOH biosurveillance program. Philippine Genome Center. 2021-03-13 [2021-06-24]. (原始内容存档于2021-05-03). 
  60. ^ Variant: 21B (Kappa). covariants.org. [2021-06-26]. (原始内容存档于2021-07-31). 
  61. ^ Nuki, Paul; Newey, Sarah. Arrival of India’s ‘double mutation’ adds to variant woes, but threat posed remains unclear. The Telegraph. 2021-04-16 [2021-04-17]. ISSN 0307-1235. (原始内容存档于2021-06-21) (英国英语). 
  62. ^ 62.0 62.1 WHO: COVID-19 Weekly Epidemiological Update, Edition 44, published 15 June 2021 (PDF). [2021-06-17]. (原始内容存档 (PDF)于2021-12-08). 
  63. ^ 63.0 63.1 Lineage C.37. cov-lineages.org. [2021-07-30]. (原始内容存档于2021-07-21). 
  64. ^ Variant: 21G (Lambda). covariants.org. [2021-07-09]. (原始内容存档于2021-07-21). 
  65. ^ Lambda variant, aka C.37, and B.1.1.1 sublineage in Peru and Chile. covdb.stanford.edu. Stanford University Coronavirus Antiviral & Resistance Database. [2021-07-19]. (原始内容存档于2021-06-30). 
  66. ^ 66.0 66.1 Risk assessment for SARS-CoV-2 variant Omicron (PDF) (Assessment). Public Health England. 22 December 2021 [23 December 2021]. GOV-10869. (原始内容存档 (PDF)于2021-12-24).  引用错误:带有name属性“phe-omicron-risk-assessment”的<ref>标签用不同内容定义了多次
  67. ^ Nyberg, Tommy; Ferguson, Neil M.; Nash, Sophie G.; Webster, Harriet H.; Flaxman, Seth; Andrews, Nick; Hinsley, Wes; Bernal, Jamie Lopez; Kall, Meaghan; Bhatt, Samir; Blomquist, Paula. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. The Lancet. 2022-03-16, 0 (0) [2022-04-03]. ISSN 0140-6736. PMID 35305296. doi:10.1016/S0140-6736(22)00462-7. (原始内容存档于2022-03-24) (英语). 
  68. ^ 不再稱印度變種、英國變種病毒!避免污名化 WHO用希臘字母命名新冠變異病毒株 風傳媒20210601. [2021-06-04]. (原始内容存档于2021-06-04). 
  69. ^ WHO pressed to explain ‘skipping’ Nu & Xi Covid strains. RT. 2021-11-26 [2021-11-28]. (原始内容存档于2021-11-27) (英语). 
  70. ^ 新變種病毒命名「避開Xi」!WHO官員:避免冒犯汙名化. 三立新闻网. 2021-11-27 [2021-11-27]. (原始内容存档于2021-12-08) (中文(台湾)). 
  71. ^ 變異病毒Omicron命名有原因 外媒揭露為何不是Nu和Xi. 自由时报. 2021-11-27 [2021-11-27]. (原始内容存档于2021-12-08) (中文(台湾)). 
  72. ^ WHOが中国に配慮?新変異株「ニュー」「クサイ」が飛ばされたワケ. 日刊スポーツ. 2021-11-27 [2021-11-27]. (原始内容存档于2021-11-27) (日语). 
  73. ^ 73.0 73.1 73.2 73.3 73.4 73.5 73.6 PANGO: Lineage B.1. [2021-06-19]. (原始内容存档于2021-12-08). 
  74. ^ 74.0 74.1 B.1演化支包含有D614G突变,即新冠病毒S蛋白英语Peplomer的第614氨基酸位点D天冬氨酸)到G甘氨酸)的变异。
  75. ^ Alm, E.; Broberg, E. K.; Connor, T.; Hodcroft, E. B.; Komissarov, A. B.; Maurer-Stroh, S.; Melidou, A.; Neher, R. A.; O’Toole, Áine; Pereyaslov, D.; The WHO European Region sequencing laboratories and GISAID EpiCoV group; et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Euro Surveillance. 2020, 25 (32). PMC 7427299 . PMID 32794443. doi:10.2807/1560-7917.ES.2020.25.32.2001410. 
  76. ^ Zhukova, Anna; Blassel, Luc; Lemoine, Frédéric; Morel, Marie; Voznica, Jakub; Gascuel, Olivier. Origin, evolution and global spread of SARS-CoV-2. Comptes Rendus Biologies. 2020-11-24: 1–20 [2021-03-14]. PMID 33274614. doi:10.5802/crbiol.29. (原始内容存档于2021-02-21). 
  77. ^ Potential variant of interest in South Africa assigned to the PANGO lineage C.1.2. [2021-08-30]. (原始内容存档于2021-12-08). 
  78. ^ Novel sublineage within B.1.1.1 currently expanding in Peru and Chile, with a convergent deletion in the ORF1a gene (Δ3675-3677) and a novel deletion in the Spike gene (Δ246-252, G75V, T76I, L452Q, F490S, T859N). [2021-06-19]. (原始内容存档于2022-01-15). 
  79. ^ The Brazil variant: what we know. [2021-04-15]. (原始内容存档于2021-12-08). 
  80. ^ Variants: distribution of cases data. Public Health England. Government Digital Service. [16 February 2021]. (原始内容存档于7 June 2021).  Updated frequently. Data up to 19 May 2021 included in the 2 July 2021 update.
  81. ^ 81.0 81.1 Scientists find ‘stealth’ version of Omicron not identifiable with PCR test. [2021-12-07]. (原始内容存档于2021-12-07). 
  82. ^ Lee, Bruce Y. New BA.2.12.1 Omicron Subvariant Is Even More Contagious, Fueling Covid-19 Upswing In New York State. Forbes. [2022-04-15] (英语). 
  83. ^ Doucleff, Michaeleen. 2 new omicron variants are spreading in N.Y. and elsewhere. Here's what we know. NPR. 2022-04-14 [2022-04-15]. (原始内容存档于2022-04-15) (英语). 
  84. ^ New omicron variant BA.2.75: No hard evidence yet, but cause for concern. [2022-07-17]. (原始内容存档于2022-08-11). 
  85. ^ World Health Organization COVID-19 Weekly Epidemiological Update (4 September 2022)
  86. ^ 86.0 86.1 Will there be a COVID winter wave? What scientists say
  87. ^ 87.0 87.1 87.2 87.3 87.4 87.5 87.6 87.7 87.8 Tracking SARS-CoV-2 variants. [2022-09-22]. (原始内容存档于2021-06-06). 
  88. ^ Philippines still free of immune-evasive XBB subvariant. [2022-10-15]. (原始内容存档于2022-10-16). 
  89. ^ 89.0 89.1 TAG-VE statement on Omicron sublineages BQ.1 and XBB. [2022-11-01]. (原始内容存档于2023-02-04). 
  90. ^ SARS-CoV-2 evolution, post-Omicron. [2022-12-06]. (原始内容存档于2023-01-15). 
  91. ^ Another new COVID variant is spreading – here's what we know about omicron BA.4.6. [2022-09-14]. (原始内容存档于2022-12-22). 
  92. ^ New Omicron offshoot BA.4.6 evades protection of Evusheld's antibodies, study finds. [2022-09-16]. (原始内容存档于2022-11-19). 
  93. ^ Just in time for fall, there's a brand-new COVID variant making headway in the U.S.
  94. ^ 94.0 94.1 Lineage B.1.1. [2021-07-16]. (原始内容存档于2022-10-05). 
  95. ^ EXPLAINED: Why Omicron Is A Family Of Four And How Its BA.1 Sublineage Is The One To Watch Out For. [2022-01-17]. (原始内容存档于2022-01-17). 
  96. ^ 96.0 96.1 Public Health England says coronavirus variant B.1.617.2 is a variant of concern. [2021-05-07]. (原始内容存档于2021-05-18). 
  97. ^ New "Delta Plus" variant of covid-19 detected, submitted to global-data-system: Govt. [2021-06-16]. (原始内容存档于2021-12-08). 
  98. ^ 英国卫生安全局调查德尔塔毒株的一种新亚型. [2021-11-06]. (原始内容存档于2021-12-08). 
  99. ^ PANGO lineages Lineage B.1.618页面存档备份,存于互联网档案馆cov-lineages.org, accessed 23 April 2021
  100. ^ What is the new 'triple mutant variant' of Covid-19 virus found in Bengal? How bad is it?页面存档备份,存于互联网档案馆www.indiatoday.in, accessed 23 April 2021
  101. ^ SARS-CoV-2 variants of concern as of 11 May 2021. www.ecdc.europa.eu. 11 May 2021 [13 May 2021]. (原始内容存档于2021-06-16). 
  102. ^ Explainer: Beyond Delta, scientists are watching new coronavirus variants. [2021-08-08]. (原始内容存档于2022-03-16). 
  103. ^ What Do We Know About B.1.621? — Variant garners attention after deadly Belgian nursing home outbreak. [2021-08-18]. (原始内容存档于2021-12-08). 
  104. ^ WHO identifies new coronavirus 'variant of interest' and experts urge caution on boosters. [2021-09-01]. (原始内容存档于2021-12-08). 
  105. ^ SARS-CoV-2 variants of concern as of 18 November 2021. [2021-05-14]. (原始内容存档于2021-06-16). 
  106. ^ Coronavirus: Indian 'double mutant' strain named B.1.617. www.thehindu.com. 2021-04-09 [2021-04-10]. (原始内容存档于2021-05-26). 
  107. ^ 107.0 107.1 Shrutirupa. IS THIS COVID – 20? | Double Mutant Strain Explained. Self Immune. 2021-04-17 [2021-04-18]. (原始内容存档于2021-04-23) (美国英语). 
  108. ^ 108.0 108.1 108.2 跟踪严重急性呼吸综合征冠状病毒2变异株. www.who.int. [2023-01-02]. (原始内容存档于2021-12-14) (中文). 
  109. ^ WHO labels new COVID-19 variant 'of concern', names it Omicron. [2021-11-26]. (原始内容存档于2021-12-08). 
  110. ^ 110.0 110.1 罗心妤. 強過Delta!新變種病毒「Nu」入侵亞洲 英國衛生大臣示警:史上最糟突變. [2021-11-26]. (原始内容存档于2021-12-16) (中文(繁体)). 
  111. ^ 111.0 111.1 猛毒Nu勁過Delta 許樹昌憂疫苗效力低於4成 促禁非洲人士入境. 东方日报 (香港). 2021-11-26 [2021-11-26]. (原始内容存档于2021-12-08) (中文(香港)). 
  112. ^ 112.0 112.1 112.2 Covid: New heavily mutated variant B.1.1.529 in South Africa raises concern. BBC新闻. 2021-11-25 [2021-11-25]. (原始内容存档于2021-11-26) (英语). 
  113. ^ Tom Pyman; Connor Boyd. 'Our scientists are deeply concerned': Sajid Javid sounds alarm over new 'worst-ever' super-mutant Covid variant that will make vaccines at least 40 per cent 'less effective' as flights are BANNED from South Africa and five other African countries. Daily Mail Online. 2021-11-25 [2021-11-26]. (原始内容存档于2022-02-01) (英语). 
  114. ^ Tracking SARS-CoV-2 variants (Tables: Currently designated Variants Under Monitoring -describes 529 variant as present in 'Multiple countries'- and 'Formerly monitored variants'- B.1.523 & B.1.619 Reclassified Nov 2021). WHO. 2021-11-25 [2021-11-25]. (原始内容存档于2021-06-06) (英语). 
  115. ^ Rambaut, Andrew; Loman, Nick; Pybus, Oliver; Barclay, Wendy; Barrett, Jeff; Carabelli, Alesandro; Connor, Tom; Peacock, Tom; L. Robertson, David; Volz, Erik. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations (报告). Written on behalf of COVID-19 Genomics Consortium UK. 2020-12-19 [2020-12-20]. (原始内容存档于2020-12-21). 
  116. ^ Pearson CAB; Russell TW; Davies NG; et al. Estimates of severity and transmissibility of novel SARS-CoV-2 variant 501Y.V2 in South Africa. 2021-01-11 [2021-03-25]. (原始内容存档于2021-06-11). 
  117. ^ 117.0 117.1 Science Brief: Emerging SARS-CoV-2 Variants. CDC. [2021-03-23]. (原始内容存档于2021-05-15). 
  118. ^ Sheri Fink. South Africa announces a new coronavirus variant.. 纽约时报. 2020-12-18 [2021-03-25]. (原始内容存档于2020-12-21). 
  119. ^ SA reaches grim milestone of 1 million Covid-19 cases. Independent Online. [2021-03-23]. (原始内容存档于2021-05-26). 
  120. ^ PANGO lineages. cov-lineages.org. [2021-04-18]. (原始内容存档于2021-06-03). 
  121. ^ Koshy, Jacob. Coronavirus | Indian 'double mutant' strain named B.1.617. The Hindu. 2021-04-08 [2021-04-13]. (原始内容存档于2021-05-26) (英语). 
  122. ^ India's variant-fuelled second wave coincided with spike in infected flights landing in Canada. Toronto Sun. 2021-04-10 [2021-04-10]. (原始内容存档于2021-06-02). 
  123. ^ "Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India". 2021-04-24 [2021-04-25]. doi:10.1101/2021.04.22.440932. (原始内容存档于2021-05-30). 
  124. ^ 'Double mutant': What are the risks of India's new Covid-19 variant. www.bbc.co.uk/news. 2021-03-25 [2021-04-11]. (原始内容存档于2021-04-28). 
  125. ^ Haseltine WA. An Indian SARS-CoV-2 Variant Lands In California. More Danger Ahead?页面存档备份,存于互联网档案馆Forbes.com, Apr 12, 2021, accessed 14 April 2021
  126. ^ British scientists warn over Indian coronavirus variant. Reuters. 2021-05-07 [2021-05-07]. (原始内容存档于2021-05-22). 
  127. ^ WHO classifies India variant as being of global concern
  128. ^ WHO narrows in on COVID Delta variant. [2021-06-06]. (原始内容存档于2021-06-06). 
  129. ^ 越南新病毒株傳染力更強 印度與英國變異株混種 中央社20210529. [2021-05-30]. (原始内容存档于2021-06-08). 
  130. ^ Robert Hart. ‘No New Hybrid Variant’ In Vietnam, World Health Organization Official Says. 福布斯. 2021-06-03 [2021-06-18]. (原始内容存档于2021-06-24). 
  131. ^ CDC document warns Delta variant appears to spread as easily as chickenpox and cause more severe infection. [2021-08-01]. (原始内容存档于2021-08-01). 
  132. ^ Delta Dilemma: Loosening Covid-19 Controls At A Time Of Increased Danger. [2021-07-14]. (原始内容存档于2021-07-14). 

外部链接

编辑