数学对象(Mathematical object)是数学中的抽象概念。用数学的普通语言来说,对象是任何可以或已经用演绎推理数学证明正式定义的对象。一般地,一个数学对象可以是一个能代入变数的值,从而可以用于公式里。 经常遇到的数学对象包括集合函数表示式几何形状、其他数学对象的变换空间。数学对象可以非常复杂。比如说,定理证明甚至理论证明论中被视为数学对象。

四维超立方体的施莱格尔图

数学对象的存在是数学哲学家进行大量研究和讨论的对象。[1]

按分支分类的数学对象列表

编辑

参见

编辑

参考文献

编辑
  1. ^ Burgess, John, and Rosen, Gideon, 1997. A Subject with No Object: Strategies for Nominalistic Reconstrual of Mathematics. Oxford University Press. ISBN 0198236158
  • Azzouni, J., 1994. Metaphysical Myths, Mathematical Practice. Cambridge University Press.
  • Burgess, John, and Rosen, Gideon, 1997. A Subject with No Object. Oxford Univ. Press.
  • Davis, Philip and Reuben Hersh, 1999 [1981]. The Mathematical Experience. Mariner Books: 156–62.
  • Gold, Bonnie, and Simons, Roger A., 2011. Proof and Other Dilemmas: Mathematics and Philosophy页面存档备份,存于互联网档案馆. Mathematical Association of America.
  • Hersh, Reuben, 1997. What is Mathematics, Really?  Oxford University Press.
  • Sfard, A., 2000, "Symbolizing mathematical reality into being,  Or how mathematical discourse and mathematical objects create each other," in Cobb, P., et al., Symbolizing and communicating in mathematics classrooms:  Perspectives on discourse, tools and instructional design. Lawrence Erlbaum.
  • Stewart Shapiro, 2000. Thinking about mathematics: The philosophy of mathematics.  Oxford University Press.

外部链接

编辑