有蹄类
有蹄类或有蹄动物是哺乳动物的一大类群,隶属劳亚兽总目之下的真有蹄上目(学名:Euungulata),包含奇蹄目和偶蹄目以及多个史前类群。陆生有蹄类的趾尖包覆有鞘状角质蹄甲,许多种类仅以蹄甲接触地面支撑身体。
有蹄类 化石时期:
| |
---|---|
平原斑马(奇蹄目)与高角羚(偶蹄目),2010年摄于博茨瓦纳乔贝国家公园 | |
科学分类 | |
界: | 动物界 Animalia |
门: | 脊索动物门 Chordata |
纲: | 哺乳纲 Mammalia |
高目: | 北方真兽高目 Boreoeutheria |
总目: | 劳亚兽总目 Laurasiatheria |
演化支: | 有阴囊类 Scrotifera |
大目: | 猛兽有蹄大目 Ferungulata |
演化支: | 泛真有蹄类 Pan-Euungulata |
上目: | 真有蹄上目 Euungulata Waddell et al., 2001[1] |
下属类群 | |
异名 | |
|
长鼻目、海牛目和蹄兔目曾被认为是有蹄类的下属或近缘类群,但遗传学研究证实,这几类动物属于大西洋兽高目下的非洲兽总目,与有蹄类的亲缘关系相当疏远。因此,以奇蹄目和偶蹄目为代表的有蹄类被称作“真有蹄类”[4],而长鼻目、海牛目及蹄兔目则合称为“准有蹄类”或“近蹄类”。
系统发生
编辑奇蹄目和偶蹄目为有蹄类的主要支系,二者最先于古新世晚期至始新世早期(即约5400万年前)出现,在多个大洲迅速分化出大量物种并平行演化。
尽管鲸豚类动物并无有蹄类最普遍的形态特征,但研究显示它们由早期的偶蹄目演化而来,因此偶蹄目也常被表述为“鲸偶蹄目”(学名:Cetartiodactyla),以显示偶蹄类与鲸类的同源关系。
蹄兔目、海牛目与长鼻目合称近蹄类。管齿目和象鼩目曾被认为属于有蹄类,并有牙齿与基因证据支持,但现已和近蹄类合称为假有蹄类,因为基因研究显示它们并非奇蹄目和偶蹄目的近缘类群,而是与非洲鼩目较为亲近。假有蹄类与非洲鼩目共同组成非洲兽总目。
有蹄类的化石纪录有中爪兽目、踝节目及多种南美洲与古近纪的分支。除蹄甲外,大部分有蹄类都发展出缩小的犬齿、丘状齿形的臼齿及粗短的距骨。其他特征是下前肢的融合。有蹄类的桡骨及尺骨是沿前肢融合的。这是现今大部分有蹄类的特征,而早期的有蹄类并无这种独有的特征。[5]这样的融合可以防止有蹄类从前肢倒下。陆生有蹄类为植食性或杂食性,而鲸豚类为肉食性,甚至是掠食者。
有蹄类和其他哺乳动物之间的关系一直存在争议,解剖学和遗传学研究给出了相互矛盾的结果。分子遗传学研究显示,有蹄类的近缘类群为猛兽类(包含食肉目和鳞甲目等)而非近蹄类。一些学者基于分子及 DNA 分析将假有蹄类与非洲鼩目组合为非洲兽总目,这显示它们与其他有蹄类的关系较远。
南美洲已灭绝的有蹄类(午蹄类)是于古新世中至晚期因南美洲的孤立而出现,早期的研究观点认为午蹄类和非洲兽总目的关系最近。然而近年的系统发生学蛋白质组研究显示午蹄类和奇蹄目互为姐妹群。
至于其他有蹄类的位置则不明。重脚目、索齿兽目及其他相关类群都被认为是近蹄类(包括其他非洲兽总目)的近缘类群,踝节目故此不再被认为是全部有蹄动物的祖先。
现代有蹄类动物的演化树如下:
真有蹄类 |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
繁殖
编辑婚配制度
编辑在有蹄类中最常见的婚配制度是一雄多雌制[6]。这种制度允许最强壮的雄性通过竞争获得更多交配机会,从而确保其基因得以传递,但是这也给雄性带来了更大的竞争压力[7]。有蹄类的一雄多雌制还可分为四种情况[8]:
- 保卫资源:雄性通过控制对雌性至关重要的资源来获得交配机会[9]。例如雄性马鹿会通过保卫交配场地来确保与更多雌性交配[10]。
- 保卫雌性:雄性通过直接控制雌性组成后宫,驱赶其他雄性个体[9]。在麋鹿中,优势雄性会在发情季节占有雌性,并驱赶靠近的雄性[11]。
- 雄性优势或求偶场:雄性在无法垄断资源的情况下,会集中在求偶场内展示求偶行为,优势雄性占据中心位置,而雌性会前来交配后离开[9]。这种行为在藏羚中较为常见[12]。
- 争夺竞争:雄性积极寻找发情雌性以获得交配机会[13]。雄性白尾鹿会找到发情雌性并短暂守护,随后再寻找下一只雌性[14]。
不同种群的婚配制度会因环境因素的变化而发生差异,甚至同一种群中也可能存在多种婚配形式[6]。种群密度、栖息地和捕食压力等都是影响婚配制度的关键因素[15][16]。
繁殖策略
编辑有蹄类的繁殖策略受到觅食生态、体型以及栖息地结构等多种因素的影响[8]。Jarman-Bell原理指出[17],体型较大的有蹄类可以通过采食低质量食物维持生命,而小型有蹄类则需要高质量食物以维持高代谢率[18]。此外,捕食者压力和栖息地结构也影响它们的集群规模和行为决策[8]。
有蹄类动物在繁殖过程中常常面临幼仔数量与个体大小之间的权衡[8]。部分物种如非洲水牛每次产下体型较大的单一幼仔[19],这种幼仔生长速度较慢但存活率较高[20][21];而另一类物种如獐则会产下数只体型较小的幼仔,这类幼仔生长速度快,断奶时间较短[19][22]。
某些物种,如西方狍,存在胚胎滞育现象,胚胎在交配后需经过一段时间才会着床,以确保幼仔在最适合的季节出生[8][23]。这种机制被认为是雌性调节繁殖时间的策略,能够提高幼仔的存活率[23]。
育幼行为
编辑有蹄类的育幼行为以雌性为主,雄性通常不参与[24]。雌性通过哺乳提供能量,以保证幼仔的生长发育[25]。哺乳行为在幼仔出生后初期最为频繁[26],随着幼仔的成长,哺乳频率逐渐减少,直到断奶[25]。此外,育幼期的雌性会采取反捕食策略以保护幼仔,避免其被天敌捕食[8]。
环境影响
编辑生活在温带和寒带的有蹄类物种在进化过程中形成了季节性繁殖的特征[27]。光周期作为动物预测未来环境变化的信号,是影响季节性繁殖的重要因素[28]。实验显示,控制光周期可以改变动物的繁殖季节,如母羊的繁殖活动会随着光周期的调整发生变化[29]。大多数有蹄类,如鹿、山羊和绵羊,属于短日照繁殖动物,它们通常在白昼变短时进入繁殖期[30]。
参考文献
编辑- ^ Waddell, PJ; Kishino, H; Ota, R. A phylogenetic foundation for comparative mammalian genomics.. Genome informatics. International Conference on Genome Informatics. 2001, 12: 141–54. PMID 11791233.
- ^ Cooper, L.N.; Seiffert, E.R.; Clementz, M.; Madar, S.I.; Bajpai, S.; Hussain, S.T.; Thewissen, J.G.M. Anthracobunids from the Middle Eocene of India and Pakistan Are Stem Perissodactyls. PLOS ONE. 2014, 9 (10): e109232. Bibcode:2014PLoSO...9j9232C. PMC 4189980 . PMID 2529587. doi:10.1371/journal.pone.0109232 .
- ^ Irwin, D.M. and Wilson, A.C. (1993). "Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants". In: F.S. Szalay, M.J. Novacek, and M.C. McKenna (eds.), Mammal Phylogeny: Placentals. pp. 257–267, Springer-Verlag, New York.
- ^ Asher, Robert J; Helgen, Kristofer M. Nomenclature and placental mammal phylogeny. BMC Evolutionary Biology. 2010, 10 (1): 102. doi:10.1186/1471-2148-10-102.
- ^ Christine M. Janis, Kathleen M. Scott, and Louis L. Jacobs. Evolution of Tertiary Mammals of North America Volume 1. Cambridge: Cambridge University Press. 1998: 322–323.
- ^ 6.0 6.1 Clutton-Brock, TH. Mammalian mating systems.. Proceedings of the Royal Society of London. Series B, Biological sciences. 1989-05-22, 236 (1285): 339–72. PMID 2567517. doi:10.1098/rspb.1989.0027.
- ^ You, Zhang-Qiang; Jiang, Zhi-Gang. Courtship and mating behaviors in Przewalski's gazelle Procapra przewalskii. ACTA ZOOLOGICA SINICA. 2005, 51 (2): 187–194.
- ^ 8.0 8.1 8.2 8.3 8.4 8.5 刘雨新; 刘丙万. 有蹄类繁殖及其影响因素研究概述. 四川动物. 2024, 43 (5): 577–595. doi:10.11984/j.issn.1000-7083.20230292.
- ^ 9.0 9.1 9.2 Emlen, ST; Oring, LW. Ecology, sexual selection, and the evolution of mating systems.. Science (New York, N.Y.). 1977-07-15, 197 (4300): 215–23. PMID 327542. doi:10.1126/science.327542.
- ^ Carranza, Juan. Female attraction by males versus sites in territorial rutting red deer. Animal Behaviour. 1995-08, 50 (2): 445–453. doi:10.1006/anbe.1995.0258.
- ^ 蒋志刚; 李春旺. 麋鹿的配偶制度、交配计策与有效种群. 生态学报. 2013-03-11, 26 (7): 2255–2260 [2024-10-23]. ISSN 1000-0933 (cn).
- ^ Buzzard, P. J.; Bleisch, W. V.; Xü, D.; Zhang, H. Evidence for lekking in chiru. Journal of Zoology. 2008-12, 276 (4): 330–335. doi:10.1111/j.1469-7998.2008.00493.x.
- ^ Wells, Kentwood D. The social behaviour of anuran amphibians. Animal Behaviour. 1977-08, 25: 666–693. doi:10.1016/0003-3472(77)90118-X.
- ^ Hirth, David H. Social Behavior of White-Tailed Deer in Relation to Habitat. Wildlife Monographs. 1977, (53): 3–55 [2024-10-23]. ISSN 0084-0173.
- ^ Lott, Dale F. Intraspecific Variation in the Social Systems of Wild Vertebrates. Behaviour. 1984, 88 (3/4): 266–325 [2024-10-23]. ISSN 0005-7959.
- ^ Thirgood, Simon; Langbein, Jochen; Putman, Rory J. Intraspecific Variation in Ungulate Mating Strategies: The Case of the Flexible Fallow Deer. Advances in the Study of Behavior. 1999, 28: 333–361. doi:10.1016/s0065-3454(08)60220-x.
- ^ Gaulin, Steven J. C. A Jarman/Bell model of primate feeding niches. Human Ecology. 1979-03, 7 (1): 1–20. doi:10.1007/BF00889349.
- ^ Geist, Valerius. On the Relationship of Social Evolution and Ecology in Ungulates. American Zoologist. 1974, 14 (1): 205–220 [2024-10-23]. ISSN 0003-1569.
- ^ 19.0 19.1 Robbins, Charles T.; Robbins, Barbara L. Fetal and Neonatal Growth Patterns and Maternal Reproductive Effort in Ungulates and Subungulates. The American Naturalist. 1979-07, 114 (1): 101–116. doi:10.1086/283456.
- ^ Millar, JS. ADAPTIVE FEATURES OF MAMMALIAN REPRODUCTION.. Evolution; international journal of organic evolution. 1977-06, 31 (2): 370–386. PMID 28563222. doi:10.1111/j.1558-5646.1977.tb01019.x.
- ^ Barber-Meyer, S. M.; Mech, L. D. Factors influencing predation on juvenile ungulates and natural selection implications. Wildlife Biology in Practice. 2008-06-30, 4 (1). doi:10.2461/WBP.2008.4.2.
- ^ Zhang, Endi. Behavioural ecology of the Chinese water deer at Whipsnade Wild Animal Park, England.. 1996-10-15.
- ^ 23.0 23.1 Linnell, J. D. C.; Andersen, R. Timing and synchrony of birth in a hider species, the roe deer Capreolus capreolus. Journal of Zoology. 1998-04, 244 (4): 497–504. doi:10.1111/j.1469-7998.1998.tb00055.x.
- ^ Kleiman, Devra G.; Malcolm, James R. The Evolution of Male Parental Investment in Mammals. Parental Care in Mammals. Springer US. : 347–387. ISBN 978-1-4613-3150-6 (英语).
- ^ 25.0 25.1 Blank, D; Yang, W. Suckling behavior in goitered gazelle: do females invest more in twins or singletons?. Zoology (Jena, Germany). 2015-10, 118 (5): 348–56. PMID 26150400. doi:10.1016/j.zool.2015.02.005.
- ^ Sadleir, R. M. F. S. Energy and protein intake in relation to growth of suckling black-tailed deer fawns. Canadian Journal of Zoology. 1980-07-01, 58 (7): 1347–1354. doi:10.1139/z80-187.
- ^ 姚蔚; 王德华,张学英. 哺乳动物季节性繁殖的内源年生物钟及光敏神经环路研究进展. 动物学杂志. 2017, 52 (4): 717–725 [2024-10-23].
- ^ Dardente, Hugues; Wood, Shona; Ebling, Francis; Sáenz de Miera, Cristina. An integrative view of mammalian seasonal neuroendocrinology. Journal of Neuroendocrinology. 2019-05, 31 (5). doi:10.1111/jne.12729.
- ^ Yeates, N. T. M. The breeding season of the sheep with particular reference to its modification by artificial means using light. The Journal of Agricultural Science. 1949-01, 39 (1): 1–43. doi:10.1017/S0021859600004299.
- ^ Karsch, FJ; Bittman, EL; Foster, DL; Goodman, RL; Legan, SJ; Robinson, JE. Neuroendocrine basis of seasonal reproduction.. Recent progress in hormone research. 1984, 40: 185–232. PMID 6385166. doi:10.1016/b978-0-12-571140-1.50010-4.
外部链接
编辑- UltimateUngulate.com(页面存档备份,存于互联网档案馆)(英文)——专门汇集全球现生有蹄动物资料(不含鲸类)并向大众免费提供的网站
- Mikko's Phylogeny Archive(米科的系统发生档案馆)网站上有关有蹄类的分类信息(页面存档备份,存于互联网档案馆)(英文)
- 《1911年版大英百科全书》中的条目:有蹄类(英文)
- 《中国大百科全书》第三版网络版中的条目:“有蹄类”和“古有蹄类”(简体中文)