生物矿化(Biomineralization)是生物经细胞代谢产生矿物的过程,常用于制造硬组织(矿化组织英语Mineralized tissues)。各类群生物均能进行生物矿化,目前已知超过60种矿物可经由生物矿化生成,包括硅藻硅酸盐软体动物甲壳动物碳酸钙、以及脊椎动物磷酸钙[9][10][11]。这些矿化组织具结构支持[12]、捕食[13]、防御[14][15]与调节胞内环境等多种功能[16][17][18]

各类群真核生物生物矿化形成的矿物种类[1]演化树为基于Adl et al. (2012)绘制[2],类群旁的字母表示该类群可形成此矿物,圆圈中的字母表示该矿物在该类群生物中被广泛、大量合成。S:硅酸盐;C:碳酸钙;P:磷酸钙;I:铁矿物;X:草酸钙;SO4硫酸盐[3][4][5][6][7][8]

最常见的生物矿化产物为磷酸钙与碳酸钙,可与胶原蛋白几丁质等有机聚合物一起组成坚硬的骨骼牙齿等矿化组织,其结构受多层次的精密调控而有复杂功能[19]。在生物学领域外,生物矿化也是材料工程等领域感兴趣的议题[20][21]

功能 编辑

动物 编辑

动物的生物矿化产物有碳酸钙、磷酸钙与二氧化硅海绵动物骨针[22])等,有包括支撑组织、防御与捕食等多种功能[23]

软体动物 编辑

 
多种软体动物的壳

软体动物经生物矿化形成的英语Mollusc shell有95%至99%成分为碳酸钙(霰石方解石等),剩下的1%至5%为有机物,其断裂韧性为纯碳酸钙的3000倍,因而为材料科学界所关注[24]。壳形成的过程中有些蛋白为促进结晶的结晶核,其他蛋白则负责导引壳的成长。珍珠母即为著名的软体动物壳,其结构复杂,各层结构与组成的晶体、有机物种类均不同,并可能因物种而异[11]

真菌 编辑

真菌也会进行生物矿化,在多种地质作用中扮演重要角色,“地质真菌学”(geomycology)即为研究真菌生物矿化、生物降解以及与金属作用等过程的学门[25]。许多真菌可分泌蛋白质至胞外,作为结晶核以合成碳酸盐等无机矿物,在金属离子存在时可形成金属碳酸盐,例如粉色面包霉菌与一些拟盘多毛孢属漆斑菌属的真菌可矿化产生碱式碳酸铜碳酸铵的混合物[26]。除碳酸盐外,有些真菌可将基质中的矿化形成铀的磷酸盐,累积于其菌丝体中,放射性的铀虽对生物体有害,但这些真菌一般耐受一定含量[27]

许多真菌也可分解矿物,特别是可分泌草酸的真菌(包括黑曲霉扇索状干腐菌英语Serpula himantioides云芝等可分解尿素的真菌),可分解磷灰石方铅矿等矿物[28]

细菌 编辑

有些细菌可进行生物矿化,但许多功能尚不明,有假说认为其作用可能是避免代谢产生的副产物抑制自身生长,也有学者认为其形成氧化铁等矿物可能有助于促进自身代谢反应[29]

趋磁细菌可矿化生成磁铁矿,组成名为磁小体的膜状结构,可感应地磁而影响其排列、分布形式[30]

成分 编辑

大多数生物矿化的产物可分为硅酸盐、碳酸盐与磷酸盐三大类[5]

硅酸盐 编辑

 
具硅壳的有壳变形虫英语testate amoeba

硅酸盐为许多海洋生物矿化的产物,如硅藻与放射虫硅壳[33],以及海绵动物的骨针[22],陆地上可合成硅酸盐的主要生物则为陆生植物[1]。硅酸盐为三种生物矿物中在生物分类上分布最广的,各大类群的真核生物都可合成[6]。不同生物组织硅化英语Silicification的程度也有区别,从仅与其他矿物共同组成结构(如笠螺英语limpet的牙齿[34])、自行组成微小的结构[35]至组成个体的主要结构者皆有[36]

碳酸盐 编辑

生物矿化产生最常见的碳酸盐为碳酸钙,其中又以方解石(有孔虫的壳与钙板金藻颗石粒等)与霰石珊瑚礁)的形态为大宗,也有少数为六方方解石非晶质碳酸钙英语Amorphous calcium carbonate(可能有结构功能[37][38],或作为生物矿化的中间产物[39][40])。有些生物矿化的产物为上述数种矿物以有组织分层的方式混合而成(如双壳贝英语Bivalve shell)。碳酸盐在海生动物的生物矿化中相当常见,但也见于陆生动物与淡水动物[41]

磷酸盐 编辑

 
蝉形齿指虾蛄以坚硬的掠肢攻击猎物[42]

生物矿化产生最常见的磷酸盐为羟磷灰石(HA),为一种天然的磷灰石,是脊椎动物骨骼、牙齿与鱼鳞的主要成分[43]。骨骼有65%至70%为羟磷灰石组成,其余则为胶原蛋白交织而成的网络;牙齿的象牙质珐琅质也有70%至80%为羟磷灰石,其中后者的蛋白网络为釉原蛋白英语amelogenin釉蛋白英语Enamelin组成,而非胶原蛋白[44]牙齿再矿化英语Remineralisation即为新的钙与磷酸离子沉积形成羟磷灰石的过程,可修补酸化造成的牙齿损伤[45]

蝉形齿指虾蛄可形成非常坚硬的掠肢(dactyl club),其结构极为致密,抗冲击能力极高[46],可分为冲击层(表层)、周期层与横纹层等三层,其中冲击层等主要成分为羟磷灰石,其余两层为磷酸钙与碳酸钙的混合物,其钙离子与磷酸离子的含量从外至内递减,大大降低其模量,可抑制裂痕的延伸,迫使新形成的裂痕转换方向,且内外两层的模量差异巨大也有助于减少跨层的能量传导[46]

 
多毛纲缨鳃虫科Glomerula piloseta所形成的柱状霰石结构
成分 生物
碳酸钙
(方解石或霰石)
二氧化硅
硅酸盐
磷灰石
磷酸盐矿物

其他矿物 编辑

石鳖的牙齿具磁铁矿
帽贝的牙齿具针铁矿
等辐骨亚纲的放射虫外壳成分为天青石

除上述三大类矿物外,还有若干种矿物能经生物矿化形成,其中许多为生存在特殊环境的生物产生,用以形成具特定物理性质的结构。有些动物因取食坚硬的基质而加强牙齿的结构,如石鳖的牙齿覆有磁铁矿[47]笠螺英语Limpet的牙齿具针铁矿[48];居于海底热泉周边的腹足纲动物外壳除碳酸钙外还有黄铁矿硫复铁矿英语Greigite以加固结构[49]

天青石硫酸锶组成的矿物[50]等辐骨亚纲放射虫外壳成分即为天青石,质地致密,因其密度较大,可使放射虫快速沉淀至半深海带,而有矿物压载(mineral ballast)的功能[50][51][52]

演化 编辑

 
一些钙质海绵

最早的生物矿化可能为距今20亿年前生成磁铁矿的趋磁细菌,两侧动物的共祖应已有此途径,在寒武纪时因基因扩增而产生另一套平行的矿化系统,用以合成含钙的矿物[53]真核生物的生物矿化痕迹可追溯至距今7亿5000万年前[54][55],类似海绵的生物可能在距今6亿3000万年前即出现方解石的外骨骼[56],但多数动物类群的生物矿化应是起源自寒武纪奥陶纪[57]。动物矿化的碳酸钙结晶形式可能取决该类群祖先在矿化演化出现当下的环境因子,其衍生的类群随后即沿用该形式的矿物[58][59][60],水层中钙与镁离子的比例与大气中的二氧化碳英语Carbon dioxide in Earth's atmosphere浓度皆会影响矿化演化出现时各类矿物的稳定度[58]

生物矿化在各类群生物中多次演化出现[61],许多演化上无关的生物类群都使用类似的矿化途径(讯息传递因子、抑制物与转录因子[62],如碳酸酐酶在各类群动物的矿化中均有类似功能,可能在动物的共祖中即已出现[63]。),显示这些同源的反应途径与蛋白可能在生物矿化出现前(前寒武纪)即存在生物中,并具矿化以外的功能[5],在生物矿化出现后它们多负责调控矿化中较根本的步骤(如决定哪些细胞将被用来合成矿物),而后续微调矿化反应的步骤(如结晶的具体形状与排列方式)在演化上则一般较晚出现,为在各类群生物中各自独立演化产生[23][64]。有假说认为前者由非矿化功能演化出矿化反应的动力是避免在离子近饱和的海水中发生不受控制的自发矿化[62],许多参与矿化反应的黏液可能最初即有此类抑制自发矿化的功能[65]。此外各类群动物中,控制细胞内钙离子浓度的蛋白高度同源,在各类群分化后各自演化产生矿化功能[66],如石珊瑚的galaxin蛋白原本具其他功能,在三叠纪左右演化出矿化的新功能[67]

有研究将软体动物壳的珠母层移植到人类牙齿上,发现此移植并未触发免疫排斥反应,移植的矿物可被人类牙齿吸收;也有研究发现腕足动物门与软体动物门动物生物矿化的反应途径高度类似,皆使用若干演化上保守的基因,显示生物矿化可能是冠轮动物祖征英语Primitive (phylogenetics)[68]。与生物矿化有关的基因演化迅速,至今仍有许多基因座具有很大的变异[64]

一般来说若产生矿化组织所需的能量小于产生等量有机组织所需的能量,进行生物矿化便是演化上有利的[69][70][71],例如产生硅酸盐所需的能量仅为制造等量木质素的约5%,即制造等量多糖(如纤维素)的10%[72]

应用 编辑

工程上许多制造奈米材料的传统方法相当耗能,需高温高压等严苛条件,并可能生成有毒的副产物,产量有限且经常难以重复[73][74]。相较之下许多生物矿化所形成的材料物理性质超越人工的材料,且在温和环境条件下即可在溶液中使用大分子与离子合成,可重复可靠地生成材料。无机矿物与有机物(蛋白质等)相结合而成的生物组织结构经常比纯矿物更为坚固,例如硅藻的硅壳是已知每单位密度强度最强的生物材料[75][76],海绵的骨针弹性也比纯硅酸盐高得多[77][78]。有仿生学研究即以模仿生物矿化作用合成所需材料为宗旨[73][74]

有研究利用可生成碳酸钙的细菌(巨大芽孢杆菌英语Bacillus megaterium)来制造可“自我愈合”的混凝土,即在混凝土中加入细菌的内孢子与有机分子等材料,当建筑出现裂缝时,渗水可将有机分子溶解,使孢子萌发,细菌即可矿化生成新的碳酸钙以修补裂缝[79][80]。除被动修补外,未来生物矿化可能在建筑中扮演更多角色,如随环境变化而精密控制材料生成的时间、位点或物理性质,使建筑得以随时感测环境因子并作出反应[81][82][83]

移除污染物 编辑

 
钙铀云母结晶

生物矿化可被用于移除被污染的水层。有些细菌与真菌细胞表面配体上带负电的磷酸离子可与水中带正电的UO22+离子结合,当浓度够高时可作为结晶核,和UO22+矿化生成钙铀云母(Ca(UO2)2(PO4)2·10–12H2O)等含铀的结晶矿物,将铀自水中矿化移除。与直接往水中加入磷酸根以生成沉淀相较,生物矿化移除铀的特异性较高,较不易与水中其他金属离子结合,因而移除铀的效率较高[84][85]

天体生物学 编辑

生物矿化产生的矿物以及与其关联的生命印迹是搜索地外生命时可以使用的线索[86]

参见 编辑

参考文献 编辑

  1. ^ 1.0 1.1 Hendry KR, Marron AO, Vincent F, Conley DJ, Gehlen M, Ibarbalz FM, Quéguiner B, Bowler C. Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts. Frontiers in Marine Science. 2018, 5. S2CID 12447257. doi:10.3389/fmars.2018.00022 .  Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License页面存档备份,存于互联网档案馆).
  2. ^ Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. The Journal of Eukaryotic Microbiology. September 2012, 59 (5): 429–493. PMC 3483872 . PMID 23020233. doi:10.1111/j.1550-7408.2012.00644.x. 
  3. ^ Ensikat HJ, Geisler T, Weigend M. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants' teeth against herbivores. Scientific Reports. May 2016, 6 (1): 26073. Bibcode:2016NatSR...626073E. PMC 4872142 . PMID 27194462. doi:10.1038/srep26073. 
  4. ^ Gal A, Hirsch A, Siegel S, Li C, Aichmayer B, Politi Y, et al. Plant cystoliths: a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. Chemistry. August 2012, 18 (33): 10262–10270. PMID 22696477. doi:10.1002/chem.201201111. 
  5. ^ 5.0 5.1 5.2 Knoll, A.H. Biomineralization and evolutionary history (PDF). Dove PM, DeYoreo JJ, Weiner S (编). Reviews in Mineralogy and Geochemistry. 2004. (原始内容 (PDF)存档于2010-06-20). 
  6. ^ 6.0 6.1 Marron AO, Ratcliffe S, Wheeler GL, Goldstein RE, King N, Not F, et al. The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution. December 2016, 33 (12): 3226–3248. PMC 5100055 . PMID 27729397. doi:10.1093/molbev/msw209. 
  7. ^ Raven JA, Knoll AH. Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity. Geomicrobiology Journal. 2010, 27 (6–7): 572–584 [2022-11-05]. S2CID 37809270. doi:10.1080/01490451003702990. (原始内容存档于2021-03-25). 
  8. ^ Weich RG, Lundberg P, Vogel HJ, Jensén P. Phosphorus-31 NMR Studies of Cell Wall-Associated Calcium-Phosphates in Ulva lactuca. Plant Physiology. May 1989, 90 (1): 230–236. PMC 1061703 . PMID 16666741. doi:10.1104/pp.90.1.230. 
  9. ^ Sigel A, Sigel H, Sigel RK (编). Biomineralization: From Nature to Application. Metal Ions in Life Sciences 4. Wiley. 2008. ISBN 978-0-470-03525-2. 
  10. ^ Weiner S, Lowenstam HA. On biomineralization. Oxford [Oxfordshire]: Oxford University Press. 1989. ISBN 978-0-19-504977-0. 
  11. ^ 11.0 11.1 Cuif JP, Dauphin Y, Sorauf JE. Biominerals and fossils through time. Cambridge. 2011. ISBN 978-0-521-87473-1. 
  12. ^ Weaver JC, Aizenberg J, Fantner GE, Kisailus D, Woesz A, Allen P, et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology. April 2007, 158 (1): 93–106. PMID 17175169. doi:10.1016/j.jsb.2006.10.027. 
  13. ^ Nesbit KT, Roer RD. Silicification of the medial tooth in the blue crab Callinectes sapidus. Journal of Morphology. December 2016, 277 (12): 1648–1660. PMID 27650814. S2CID 46840652. doi:10.1002/jmor.20614. 
  14. ^ Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F. Grazing-induced changes in cell wall silicification in a marine diatom. Protist. January 2007, 158 (1): 21–28. PMID 17081802. doi:10.1016/j.protis.2006.09.002. 
  15. ^ Friedrichs L, Hörnig M, Schulze L, Bertram A, Jansen S, Hamm C. Size and biomechanic properties of diatom frustules influence food uptake by copepods. Marine Ecology Progress Series. 2013, 481: 41–51 [2022-11-05]. Bibcode:2013MEPS..481...41F. doi:10.3354/meps10227. (原始内容存档于2022-10-15). 
  16. ^ Desouky M, Jugdaohsingh R, McCrohan CR, White KN, Powell JJ. Aluminum-dependent regulation of intracellular silicon in the aquatic invertebrate Lymnaea stagnalis. Proceedings of the National Academy of Sciences of the United States of America. March 2002, 99 (6): 3394–3399. Bibcode:2002PNAS...99.3394D. PMC 122534 . PMID 11891333. doi:10.1073/pnas.062478699 . 
  17. ^ Neumann D, zur Nieden U. Silicon and heavy metal tolerance of higher plants. Phytochemistry. April 2001, 56 (7): 685–692. PMID 11314953. doi:10.1016/S0031-9422(00)00472-6. 
  18. ^ Milligan AJ, Morel FM. A proton buffering role for silica in diatoms. Science. September 2002, 297 (5588): 1848–1850. Bibcode:2002Sci...297.1848M. PMID 12228711. S2CID 206507070. doi:10.1126/science.1074958. 
  19. ^ Vinn O. Occurrence, formation and function of organic sheets in the mineral tube structures of Serpulidae (polychaeta, Annelida). PLOS ONE. 2013, 8 (10): e75330. Bibcode:2013PLoSO...875330V. PMC 3792063 . PMID 24116035. doi:10.1371/journal.pone.0075330 . 
  20. ^ Boskey AL. Biomineralization: conflicts, challenges, and opportunities. Journal of Cellular Biochemistry. 1998, 30–31 (S30-31): 83–91. PMID 9893259. S2CID 46004807. doi:10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F. 
  21. ^ Sarikaya M. Biomimetics: materials fabrication through biology. Proceedings of the National Academy of Sciences of the United States of America. December 1999, 96 (25): 14183–14185. Bibcode:1999PNAS...9614183S. PMC 33939 . PMID 10588672. doi:10.1073/pnas.96.25.14183 . 
  22. ^ 22.0 22.1 Hooper, John. Structure of Sponges. Queensland Museum. 2018 [27 September 2019]. (原始内容存档于26 September 2019). 
  23. ^ 23.0 23.1 Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, et al. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Developmental Biology. December 2006, 300 (1): 335–348. PMID 16987510. doi:10.1016/j.ydbio.2006.07.047 . 
  24. ^ Currey JD. The design of mineralised hard tissues for their mechanical functions. The Journal of Experimental Biology. December 1999, 202 (Pt 23): 3285–3294. PMID 10562511. doi:10.1242/jeb.202.23.3285. 
  25. ^ Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research. January 2007, 111 (Pt 1): 3–49. PMID 17307120. doi:10.1016/j.mycres.2006.12.001. 
  26. ^ Li Q, Gadd GM. Biosynthesis of copper carbonate nanoparticles by ureolytic fungi. Applied Microbiology and Biotechnology. October 2017, 101 (19): 7397–7407. PMC 5594056 . PMID 28799032. doi:10.1007/s00253-017-8451-x. 
  27. ^ Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM. Uranium phosphate biomineralization by fungi. Environmental Microbiology. June 2015, 17 (6): 2064–2075. PMID 25580878. S2CID 9699895. doi:10.1111/1462-2920.12771. 
  28. ^ Adeyemi AO, Gadd GM. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals. June 2005, 18 (3): 269–281. PMID 15984571. S2CID 35004304. doi:10.1007/s10534-005-1539-2. 
  29. ^ Fortin D. Geochemistry. What biogenic minerals tell us. Science. March 2004, 303 (5664): 1618–1619. PMID 15016984. S2CID 41179538. doi:10.1126/science.1095177. 
  30. ^ Komeili, Arash; Li, Zhuo; Newman, Dianne K.; Jensen, Grant J. Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK. Science (American Association for the Advancement of Science (AAAS)). 2006-01-13, 311 (5758): 242–245. ISSN 0036-8075. S2CID 36909813. doi:10.1126/science.1123231. 
  31. ^ Sorby, Henry Clifton. On the organic origin of the so-called 'Crystalloids' of the chalk. Annals and Magazine of Natural History. Ser. 3. 1861, 8 (45): 193–200 [2022-11-05]. doi:10.1080/00222936108697404. (原始内容存档于2022-11-05). 
  32. ^ Junqueira, Luiz Carlos; José Carneiro. Foltin, Janet; Lebowitz, Harriet; Boyle, Peter J. , 编. Basic Histology, Text & Atlas  10th. McGraw-Hill Companies. 2003: 144. ISBN 978-0-07-137829-1. Inorganic matter represents about 50% of the dry weight of bone ... crystals show imperfections and are not identical to the hydroxyapatite found in the rock minerals 
  33. ^ Demaster DJ. Marine Silica Cycle. Encyclopedia of Ocean Sciences. 2001: 1659–1667. ISBN 9780122274305. doi:10.1006/rwos.2001.0278. 
  34. ^ Sone ED, Weiner S, Addadi L. Biomineralization of limpet teeth: a cryo-TEM study of the organic matrix and the onset of mineral deposition. Journal of Structural Biology. June 2007, 158 (3): 428–444. PMID 17306563. doi:10.1016/j.jsb.2007.01.001. 
  35. ^ Foissner W, Weissenbacher B, Krautgartner WD, Lütz-Meindl U. A cover of glass: first report of biomineralized silicon in a ciliate, Maryna umbrellata (Ciliophora: Colpodea). The Journal of Eukaryotic Microbiology. 2009, 56 (6): 519–530. PMC 2917745 . PMID 19883440. doi:10.1111/j.1550-7408.2009.00431.x. 
  36. ^ Preisig HR. Siliceous structures and silicification in flagellated protists. Protoplasma. 1994, 181 (1–4): 29–42. S2CID 27698051. doi:10.1007/BF01666387. 
  37. ^ Pokroy B, Kabalah-Amitai L, Polishchuk I, DeVol RT, Blonsky AZ, Sun CY, Marcus MA, Scholl A, Gilbert PU. Narrowly Distributed Crystal Orientation in Biomineral Vaterite. Chemistry of Materials. 2015-10-13, 27 (19): 6516–6523. ISSN 0897-4756. S2CID 118355403. arXiv:1609.05449 . doi:10.1021/acs.chemmater.5b01542. 
  38. ^ Neues F, Hild S, Epple M, Marti O, Ziegler A. Amorphous and crystalline calcium carbonate distribution in the tergite cuticle of moulting Porcellio scaber (Isopoda, Crustacea) (PDF). Journal of Structural Biology. July 2011, 175 (1): 10–20 [2022-11-05]. PMID 21458575. doi:10.1016/j.jsb.2011.03.019. (原始内容存档 (PDF)于2022-10-17). 
  39. ^ Jacob DE, Wirth R, Agbaje OB, Branson O, Eggins SM. Planktic foraminifera form their shells via metastable carbonate phases. Nature Communications. November 2017, 8 (1): 1265. Bibcode:2017NatCo...8.1265J. PMC 5668319 . PMID 29097678. doi:10.1038/s41467-017-00955-0. 
  40. ^ Mass T, Giuffre AJ, Sun CY, Stifler CA, Frazier MJ, Neder M, et al. Amorphous calcium carbonate particles form coral skeletons. Proceedings of the National Academy of Sciences of the United States of America. September 2017, 114 (37): E7670–E7678. Bibcode:2017PNAS..114E7670M. PMC 5604026 . PMID 28847944. doi:10.1073/pnas.1707890114 . 
  41. ^ Raven JA, Giordano M. Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment?. Geobiology. March 2009, 7 (2): 140–154. PMID 19207569. S2CID 42962176. doi:10.1111/j.1472-4669.2008.00181.x. 
  42. ^ Patek SN, Caldwell RL. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. The Journal of Experimental Biology. October 2005, 208 (Pt 19): 3655–3664. PMID 16169943. S2CID 312009. doi:10.1242/jeb.01831 . 
  43. ^ Onozato H, Watabe N. Studies on fish scale formation and resorption. III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: Cyprinidae). Cell and Tissue Research. October 1979, 201 (3): 409–422. PMID 574424. S2CID 2222515. doi:10.1007/BF00236999. 
  44. ^ Habibah TU, Amlani DB, Brizuela M. Biomaterials, Hydroxyapatite. Stat Pearls. January 2018 [2018-08-12]. PMID 30020686. (原始内容存档于2020-03-28). 
  45. ^ Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization-remineralization dynamics in teeth and bone. International Journal of Nanomedicine. 2016, 11: 4743–4763. PMC 5034904 . PMID 27695330. doi:10.2147/IJN.S107624. 
  46. ^ 46.0 46.1 Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science. June 2012, 336 (6086): 1275–1280 [2017-12-02]. Bibcode:2012Sci...336.1275W. PMID 22679090. S2CID 8509385. doi:10.1126/science.1218764. (原始内容存档于2020-09-13). 
  47. ^ Joester D, Brooker LR. The Chiton Radula: A Model System for Versatile Use of Iron Oxides*. Faivre D (编). Iron Oxides 1st. Wiley. 2016-07-05: 177–206. ISBN 978-3-527-33882-5. doi:10.1002/9783527691395.ch8. 
  48. ^ Barber AH, Lu D, Pugno NM. Extreme strength observed in limpet teeth. Journal of the Royal Society, Interface. April 2015, 12 (105): 20141326. PMC 4387522 . PMID 25694539. doi:10.1098/rsif.2014.1326. 
  49. ^ Chen C, Linse K, Copley JT, Rogers AD. The 'scaly-foot gastropod': a new genus and species of hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae) from the Indian Ocean. Journal of Molluscan Studies. August 2015, 81 (3): 322–334. ISSN 0260-1230. doi:10.1093/mollus/eyv013 . 
  50. ^ 50.0 50.1 Le Moigne FA. Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump. Frontiers in Marine Science. 2019, 6. doi:10.3389/fmars.2019.00634 . 
  51. ^ Martin P, Allen JT, Cooper MJ, Johns DG, Lampitt RS, Sanders R, Teagle DA. Sedimentation of acantharian cysts in the Iceland Basin: Strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnology and Oceanography. 2010, 55 (2): 604–614. doi:10.4319/lo.2009.55.2.0604. 
  52. ^ Belcher A, Manno C, Thorpe S, Tarling G. Acantharian cysts: High flux occurrence in the bathypelagic zone of the Scotia Sea, Southern Ocean (PDF). Marine Biology. 2018, 165 (7) [2022-11-05]. S2CID 90349921. doi:10.1007/s00227-018-3376-1. (原始内容存档 (PDF)于2022-08-17). 
  53. ^ Kirschvink JL, Hagadorn JW. 10 A Grand Unified theory of Biomineralization.. Bäuerlein E (编). The Biomineralisation of Nano- and Micro-Structures. Weinheim, Germany: Wiley-VCH. 2000: 139–150. 
  54. ^ Porter S. The rise of predators. Geology. 2011, 39 (6): 607–608. Bibcode:2011Geo....39..607P. doi:10.1130/focus062011.1 . 
  55. ^ Cohen PA, Schopf JW, Butterfield NJ, Kudryavtsev AB, Macdonald FA. Phosphate biomineralization in mid-Neoproterozoic protists. Geology. 2011, 39 (6): 539–542. Bibcode:2011Geo....39..539C. S2CID 32229787. doi:10.1130/G31833.1. 
  56. ^ Maloof AC, Rose CV, Beach R, Samuels BM, Calmet CC, Erwin DH, et al. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience. 2010, 3 (9): 653–659. Bibcode:2010NatGe...3..653M. S2CID 13171894. doi:10.1038/ngeo934. 
  57. ^ Wood RA, Grotzinger JP, Dickson JA. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science. June 2002, 296 (5577): 2383–2386. Bibcode:2002Sci...296.2383W. PMID 12089440. S2CID 9515357. doi:10.1126/science.1071599. 
  58. ^ 58.0 58.1 Zhuravlev AY, Wood RA. Eve of biomineralization: Controls on skeletal mineralogy (PDF). Geology. 2008, 36 (12): 923 [2022-11-05]. Bibcode:2008Geo....36..923Z. doi:10.1130/G25094A.1. (原始内容存档 (PDF)于2016-03-04). 
  59. ^ Porter SM. Seawater chemistry and early carbonate biomineralization. Science. June 2007, 316 (5829): 1302. Bibcode:2007Sci...316.1302P. PMID 17540895. S2CID 27418253. doi:10.1126/science.1137284. 
  60. ^ Maloof AC, Porter SM, Moore JL, Dudás FÖ, Bowring SA, Higgins JA, Fike DA, Eddy MP. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin. 2010, 122 (11–12): 1731–1774. Bibcode:2010GSAB..122.1731M. S2CID 6694681. doi:10.1130/B30346.1. 
  61. ^ Murdock DJ, Donoghue PC. Evolutionary origins of animal skeletal biomineralization. Cells Tissues Organs. 2011, 194 (2–4): 98–102. PMID 21625061. S2CID 45466684. doi:10.1159/000324245. 
  62. ^ 62.0 62.1 Westbroek P, Marin F. A marriage of bone and nacre. Nature. April 1998, 392 (6679): 861–862. Bibcode:1998Natur.392..861W. PMID 9582064. S2CID 4348775. doi:10.1038/31798 . 
  63. ^ Jackson DJ, Macis L, Reitner J, Degnan BM, Wörheide G. Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science. June 2007, 316 (5833): 1893–1895. Bibcode:2007Sci...316.1893J. PMID 17540861. S2CID 7042860. doi:10.1126/science.1141560. 
  64. ^ 64.0 64.1 Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, et al. Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution. March 2010, 27 (3): 591–608. PMID 19915030. doi:10.1093/molbev/msp278 . 
  65. ^ Marin F, Smith M, Isa Y, Muyzer G, Westbroek P. Skeletal matrices, muci, and the origin of invertebrate calcification. Proceedings of the National Academy of Sciences of the United States of America. February 1996, 93 (4): 1554–1559. Bibcode:1996PNAS...93.1554M. PMC 39979 . PMID 11607630. doi:10.1073/pnas.93.4.1554 . 
  66. ^ Lowenstam HA, Margulis L. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. Bio Systems. 1980, 12 (1–2): 27–41. PMID 6991017. doi:10.1016/0303-2647(80)90036-2. 
  67. ^ Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evolutionary Biology. July 2009, 9 (1): 178. PMC 2726143 . PMID 19638240. doi:10.1186/1471-2148-9-178. 
  68. ^ Wernström JV, Gąsiorowski L, Hejnol A. Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid-bryozoan stem lineage. EvoDevo. September 2022, 13 (1): 17. PMC 9484238 . PMID 36123753. doi:10.1186/s13227-022-00202-8. 
  69. ^ Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. 2001 [2022-11-05]. ISBN 9780198508823. (原始内容存档于2022-11-12). 
  70. ^ Raven JA, Waite AM. The evolution of silicification in diatoms: Inescapable sinking and sinking as escape?. New Phytologist. 2004, 162 (1): 45–61. doi:10.1111/j.1469-8137.2004.01022.x. 
  71. ^ Finkel ZV, Kotrc B. Silica Use Through Time: Macroevolutionary Change in the Morphology of the Diatom Fustule. Geomicrobiology Journal. 2010, 27 (6–7): 596–608. S2CID 85218013. doi:10.1080/01490451003702941. 
  72. ^ Raven JA. The Transport and Function of Silicon in Plants. Biological Reviews. 1983, 58 (2): 179–207. S2CID 86067386. doi:10.1111/j.1469-185X.1983.tb00385.x. 
  73. ^ 73.0 73.1 Sigel A, Sigel H, Sigel RK. Biomineralization: From Nature to Application. 30 April 2008 [2022-11-05]. ISBN 9780470986318. (原始内容存档于2022-11-12). 
  74. ^ 74.0 74.1 Aparicio C, Ginebra MP. Biomineralization and Biomaterials: Fundamentals and Applications. 28 September 2015 [2022-11-05]. ISBN 9781782423560. (原始内容存档于2022-11-12). 
  75. ^ Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Architecture and material properties of diatom shells provide effective mechanical protection (PDF). Nature. February 2003, 421 (6925): 841–843 [2022-11-05]. Bibcode:2003Natur.421..841H. PMID 12594512. S2CID 4336989. doi:10.1038/nature01416. (原始内容存档 (PDF)于2022-10-17). 
  76. ^ Aitken ZH, Luo S, Reynolds SN, Thaulow C, Greer JR. Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule. Proceedings of the National Academy of Sciences of the United States of America. February 2016, 113 (8): 2017–2022. Bibcode:2016PNAS..113.2017A. PMC 4776537 . PMID 26858446. doi:10.1073/pnas.1519790113 . 
  77. ^ Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, et al. Nanostructural Organization of Naturally Occurring Composites—Part I: Silica-Collagen-Based Biocomposites. Journal of Nanomaterials. 2008, 2008: 1–8. doi:10.1155/2008/623838 . 
  78. ^ Shimizu K, Amano T, Bari MR, Weaver JC, Arima J, Mori N. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proceedings of the National Academy of Sciences of the United States of America. September 2015, 112 (37): 11449–11454. Bibcode:2015PNAS..11211449S. PMC 4577155 . PMID 26261346. doi:10.1073/pnas.1506968112 . 
  79. ^ Jonkers HM. Self healing concrete: a biological approach. van der Zwaag S (编). Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science. Springer. 2007: 195–204 [2022-11-05]. ISBN 9781402062506. (原始内容存档于2022-11-12). 
  80. ^ US 8728365,Dosier GK,“Methods for making construction material using enzyme producing bacteria”,发行于2014,指定于Biomason Inc. 
  81. ^ Rubinstein SM, Kolodkin-Gal I, McLoon A, Chai L, Kolter R, Losick R, Weitz DA. Osmotic pressure can regulate matrix gene expression in Bacillus subtilis. Molecular Microbiology. October 2012, 86 (2): 426–436. PMC 3828655 . PMID 22882172. doi:10.1111/j.1365-2958.2012.08201.x. 
  82. ^ Chan JM, Guttenplan SB, Kearns DB. Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. Journal of Bacteriology. February 2014, 196 (4): 740–753. PMC 3911173 . PMID 24296669. doi:10.1128/JB.01217-13. 
  83. ^ Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I. Architects of nature: growing buildings with bacterial biofilms. Microbial Biotechnology. September 2017, 10 (5): 1157–1163. PMC 5609236 . PMID 28815998. doi:10.1111/1751-7915.12833. 
  84. ^ Newsome L, Morris K, Lloyd JR. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology. 2014, 363: 164–184. Bibcode:2014ChGeo.363..164N. doi:10.1016/j.chemgeo.2013.10.034 . 
  85. ^ Lloyd JR, Macaskie LE. Environmental microbe-metal interactions: Bioremediation of radionuclide-containing wastewaters. Washington, DC: ASM Press. 2000: 277–327. ISBN 978-1-55581-195-2. 
  86. ^ Steele A, Beaty D (编). Final report of the MEPAG Astrobiology Field Laboratory Science Steering Group (AFL-SSG) (.doc). The Astrobiology Field Laboratory. U.S.A.: Mars Exploration Program Analysis Group (MEPAG) - NASA. September 26, 2006: 72 [2009-07-22]. (原始内容存档于2020-05-11).