生物礦化(Biomineralization)是生物經細胞代謝產生礦物的過程,常用於製造硬組織(礦化組織英语Mineralized tissues)。各類群生物均能進行生物礦化,目前已知超過60種礦物可經由生物礦化生成,包括矽藻矽酸鹽軟體動物甲殼動物碳酸鈣、以及脊椎動物磷酸钙[9][10][11]。這些礦化組織具結構支持[12]、捕食[13]、防禦[14][15]與調節胞內環境等多種功能[16][17][18]

各類群真核生物生物礦化形成的礦物種類[1]演化樹為基於Adl et al. (2012)繪製[2],類群旁的字母表示該類群可形成此礦物,圓圈中的字母表示該礦物在該類群生物中被廣泛、大量合成。S:矽酸鹽;C:碳酸鈣;P:磷酸鈣;I:鐵礦物;X:草酸鈣;SO4硫酸鹽[3][4][5][6][7][8]

最常見的生物礦化產物為磷酸鈣與碳酸鈣,可與膠原蛋白幾丁質等有機聚合物一起組成堅硬的骨骼牙齒等礦化組織,其結構受多層次的精密調控而有複雜功能[19]。在生物學領域外,生物礦化也是材料工程等領域感興趣的議題[20][21]

功能

编辑

動物

编辑

動物的生物礦化產物有碳酸鈣、磷酸鈣與二氧化矽海綿動物骨針[22])等,有包括支撐組織、防禦與捕食等多種功能[23]

軟體動物

编辑
 
多種軟體動物的殼

軟體動物經生物礦化形成的英语Mollusc shell有95%至99%成分為碳酸鈣(霰石方解石等),剩下的1%至5%為有機物,其斷裂韌性為純碳酸鈣的3000倍,因而為材料科學界所關注[24]。殼形成的過程中有些蛋白為促進結晶的結晶核,其他蛋白則負責導引殼的成長。珍珠母即為著名的軟體動物殼,其結構複雜,各層結構與組成的晶體、有機物種類均不同,並可能因物種而異[11]

真菌

编辑

真菌也會進行生物礦化,在多種地質作用中扮演重要角色,「地質真菌學」(geomycology)即為研究真菌生物礦化、生物降解以及與金屬作用等過程的學門[25]。許多真菌可分泌蛋白質至胞外,作為結晶核以合成碳酸鹽等無機礦物,在金屬離子存在時可形成金屬碳酸鹽,例如粉色麵包黴菌與一些擬盤多毛孢屬漆斑菌属的真菌可礦化產生鹼式碳酸銅碳酸銨的混合物[26]。除碳酸鹽外,有些真菌可將基質中的礦化形成鈾的磷酸鹽,累積於其菌絲體中,放射性的鈾雖對生物體有害,但這些真菌一般耐受一定含量[27]

許多真菌也可分解礦物,特別是可分泌草酸的真菌(包括黑麴黴扇索状干腐菌英语Serpula himantioides雲芝等可分解尿素的真菌),可分解磷灰石方鉛礦等礦物[28]

細菌

编辑

有些細菌可進行生物礦化,但許多功能尚不明,有假說認為其作用可能是避免代謝產生的副產物抑制自身生長,也有學者認為其形成氧化鐵等礦物可能有助於促進自身代謝反應[29]

趨磁細菌可礦化生成磁鐵礦,組成名為磁小体的膜狀結構,可感應地磁而影響其排列、分布形式[30]

成分

编辑

大多數生物礦化的產物可分為矽酸鹽、碳酸鹽與磷酸鹽三大類[5]

矽酸鹽

编辑
 
具矽殼的有壳变形虫英语testate amoeba

矽酸鹽為許多海洋生物礦化的產物,如矽藻與放射蟲矽殼[33],以及海綿動物的骨針[22],陸地上可合成矽酸鹽的主要生物則為陸生植物[1]。矽酸鹽為三種生物礦物中在生物分類上分布最廣的,各大類群的真核生物都可合成[6]。不同生物組織矽化英语Silicification的程度也有區別,從僅與其他礦物共同組成結構(如笠螺英语limpet的牙齒[34])、自行組成微小的結構[35]至組成個體的主要結構者皆有[36]

碳酸鹽

编辑

生物礦化產生最常見的碳酸鹽為碳酸鈣,其中又以方解石(有孔蟲的殼與鈣板金藻颗石粒等)與霰石珊瑚礁)的形態為大宗,也有少數為六方方解石非晶質碳酸鈣英语Amorphous calcium carbonate(可能有結構功能[37][38],或作為生物礦化的中間產物[39][40])。有些生物礦化的產物為上述數種礦物以有組織分層的方式混合而成(如雙殼貝英语Bivalve shell)。碳酸鹽在海生動物的生物礦化中相當常見,但也見於陸生動物與淡水動物[41]

磷酸鹽

编辑
 
蟬形齒指蝦蛄以堅硬的掠肢攻擊獵物[42]

生物礦化產生最常見的磷酸鹽為羥磷灰石(HA),為一種天然的磷灰石,是脊椎動物骨骼、牙齒與魚鱗的主要成分[43]。骨骼有65%至70%為羥磷灰石組成,其餘則為膠原蛋白交織而成的網絡;牙齒的象牙質琺瑯質也有70%至80%為羥磷灰石,其中後者的蛋白網絡為釉原蛋白英语amelogenin釉蛋白英语Enamelin組成,而非膠原蛋白[44]牙齒再礦化英语Remineralisation即為新的鈣與磷酸離子沈積形成羥磷灰石的過程,可修補酸化造成的牙齒損傷[45]

蟬形齒指蝦蛄可形成非常堅硬的掠肢(dactyl club),其結構極為緻密,抗衝擊能力極高[46],可分為衝擊層(表層)、週期層與橫紋層等三層,其中衝擊層等主要成分為羥磷灰石,其餘兩層為磷酸鈣與碳酸鈣的混合物,其鈣離子與磷酸離子的含量從外至內遞減,大大降低其模量,可抑制裂痕的延伸,迫使新形成的裂痕轉換方向,且內外兩層的模量差異巨大也有助於減少跨層的能量傳導[46]

 
多毛綱纓鰓蟲科Glomerula piloseta所形成的柱狀霰石結構
成分 生物
碳酸鈣
(方解石或霰石)
二氧化硅
矽酸鹽
磷灰石
磷酸鹽礦物

其他礦物

编辑
石鱉的牙齒具磁鐵礦
帽貝的牙齒具針鐵礦
等辐骨亚纲的放射蟲外殼成分為天青石

除上述三大類礦物外,還有若干種礦物能經生物礦化形成,其中許多為生存在特殊環境的生物產生,用以形成具特定物理性質的結構。有些動物因取食堅硬的基質而加強牙齒的結構,如石鱉的牙齒覆有磁鐵礦[47]笠螺英语Limpet的牙齒具針鐵礦[48];居於海底熱泉周邊的腹足綱動物外殼除碳酸鈣外還有黃鐵礦硫複鐵礦英语Greigite以加固結構[49]

天青石硫酸鍶組成的礦物[50]等辐骨亚纲放射蟲外殼成分即為天青石,質地緻密,因其密度較大,可使放射蟲快速沈澱至半深海帶,而有礦物壓載(mineral ballast)的功能[50][51][52]

演化

编辑
 
一些鈣質海綿

最早的生物礦化可能為距今20億年前生成磁鐵礦的趨磁細菌,兩側動物的共祖應已有此途徑,在寒武紀時因基因擴增而產生另一套平行的礦化系統,用以合成含鈣的礦物[53]真核生物的生物礦化痕跡可追溯至距今7億5000萬年前[54][55],類似海綿的生物可能在距今6億3000萬年前即出現方解石的外骨骼[56],但多數動物類群的生物礦化應是起源自寒武紀奧陶紀[57]。動物礦化的碳酸鈣結晶形式可能取決該類群祖先在礦化演化出現當下的環境因子,其衍生的類群隨後即沿用該形式的礦物[58][59][60],水層中鈣與鎂離子的比例與大氣中的二氧化碳英语Carbon dioxide in Earth's atmosphere濃度皆會影響礦化演化出現時各類礦物的穩定度[58]

生物礦化在各類群生物中多次演化出現[61],許多演化上無關的生物類群都使用類似的礦化途徑(訊息傳遞因子、抑制物與轉錄因子[62],如碳酸酐酶在各類群動物的礦化中均有類似功能,可能在動物的共祖中即已出現[63]。),顯示這些同源的反應途徑與蛋白可能在生物礦化出現前(前寒武紀)即存在生物中,並具礦化以外的功能[5],在生物礦化出現後它們多負責調控礦化中較根本的步驟(如決定哪些細胞將被用來合成礦物),而後續微調礦化反應的步驟(如結晶的具體形狀與排列方式)在演化上則一般較晚出現,為在各類群生物中各自獨立演化產生[23][64]。有假說認為前者由非礦化功能演化出礦化反應的動力是避免在離子近飽和的海水中發生不受控制的自發礦化[62],許多參與礦化反應的黏液可能最初即有此類抑制自發礦化的功能[65]。此外各類群動物中,控制細胞內鈣離子濃度的蛋白高度同源,在各類群分化後各自演化產生礦化功能[66],如石珊瑚的galaxin蛋白原本具其他功能,在三疊紀左右演化出礦化的新功能[67]

有研究將軟體動物殼的珠母層移植到人類牙齒上,發現此移植並未觸發免疫排斥反應,移植的礦物可被人類牙齒吸收;也有研究發現腕足動物門與軟體動物門動物生物礦化的反應途徑高度類似,皆使用若干演化上保守的基因,顯示生物礦化可能是冠輪動物祖徵英语Primitive (phylogenetics)[68]。與生物礦化有關的基因演化迅速,至今仍有許多基因座具有很大的變異[64]

一般來說若產生礦化組織所需的能量小於產生等量有機組織所需的能量,進行生物礦化便是演化上有利的[69][70][71],例如產生矽酸鹽所需的能量僅為製造等量木質素的約5%,即製造等量多醣(如纖維素)的10%[72]

應用

编辑

工程上許多製造奈米材料的傳統方法相當耗能,需高溫高壓等嚴苛條件,並可能生成有毒的副產物,產量有限且經常難以重複[73][74]。相較之下許多生物礦化所形成的材料物理性質超越人工的材料,且在溫和環境條件下即可在溶液中使用大分子與離子合成,可重複可靠地生成材料。無機礦物與有機物(蛋白質等)相結合而成的生物組織結構經常比純礦物更為堅固,例如矽藻的矽殼是已知每單位密度強度最強的生物材料[75][76],海綿的骨針彈性也比純矽酸鹽高得多[77][78]。有仿生學研究即以模仿生物礦化作用合成所需材料為宗旨[73][74]

有研究利用可生成碳酸鈣的細菌(巨大芽孢杆菌英语Bacillus megaterium)來製造可「自我癒合」的混凝土,即在混凝土中加入細菌的內孢子與有機分子等材料,當建築出現裂縫時,滲水可將有機分子溶解,使孢子萌發,細菌即可礦化生成新的碳酸鈣以修補裂縫[79][80]。除被動修補外,未來生物礦化可能在建築中扮演更多角色,如隨環境變化而精密控制材料生成的時間、位點或物理性質,使建築得以隨時感測環境因子並作出反應[81][82][83]

移除污染物

编辑
 
鈣鈾雲母結晶

生物礦化可被用於移除被污染的水層。有些細菌與真菌細胞表面配體上帶負電的磷酸離子可與水中帶正電的UO22+離子結合,當濃度夠高時可作為結晶核,和UO22+礦化生成鈣鈾雲母(Ca(UO2)2(PO4)2·10–12H2O)等含鈾的結晶礦物,將鈾自水中礦化移除。與直接往水中加入磷酸根以生成沈澱相較,生物礦化移除鈾的特異性較高,較不易與水中其他金屬離子結合,因而移除鈾的效率較高[84][85]

天體生物學

编辑

生物礦化產生的礦物以及與其關聯的生命印跡是搜索地外生命時可以使用的線索[86]

參見

编辑

參考文獻

编辑
  1. ^ 1.0 1.1 Hendry KR, Marron AO, Vincent F, Conley DJ, Gehlen M, Ibarbalz FM, Quéguiner B, Bowler C. Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts. Frontiers in Marine Science. 2018, 5. S2CID 12447257. doi:10.3389/fmars.2018.00022 .  Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License页面存档备份,存于互联网档案馆).
  2. ^ Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. The Journal of Eukaryotic Microbiology. September 2012, 59 (5): 429–493. PMC 3483872 . PMID 23020233. doi:10.1111/j.1550-7408.2012.00644.x. 
  3. ^ Ensikat HJ, Geisler T, Weigend M. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants' teeth against herbivores. Scientific Reports. May 2016, 6 (1): 26073. Bibcode:2016NatSR...626073E. PMC 4872142 . PMID 27194462. doi:10.1038/srep26073. 
  4. ^ Gal A, Hirsch A, Siegel S, Li C, Aichmayer B, Politi Y, et al. Plant cystoliths: a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. Chemistry. August 2012, 18 (33): 10262–10270. PMID 22696477. doi:10.1002/chem.201201111. 
  5. ^ 5.0 5.1 5.2 Knoll, A.H. Biomineralization and evolutionary history (PDF). Dove PM, DeYoreo JJ, Weiner S (编). Reviews in Mineralogy and Geochemistry. 2004. (原始内容 (PDF)存档于2010-06-20). 
  6. ^ 6.0 6.1 Marron AO, Ratcliffe S, Wheeler GL, Goldstein RE, King N, Not F, et al. The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution. December 2016, 33 (12): 3226–3248. PMC 5100055 . PMID 27729397. doi:10.1093/molbev/msw209. 
  7. ^ Raven JA, Knoll AH. Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity. Geomicrobiology Journal. 2010, 27 (6–7): 572–584 [2022-11-05]. S2CID 37809270. doi:10.1080/01490451003702990. (原始内容存档于2021-03-25). 
  8. ^ Weich RG, Lundberg P, Vogel HJ, Jensén P. Phosphorus-31 NMR Studies of Cell Wall-Associated Calcium-Phosphates in Ulva lactuca. Plant Physiology. May 1989, 90 (1): 230–236. PMC 1061703 . PMID 16666741. doi:10.1104/pp.90.1.230. 
  9. ^ Sigel A, Sigel H, Sigel RK (编). Biomineralization: From Nature to Application. Metal Ions in Life Sciences 4. Wiley. 2008. ISBN 978-0-470-03525-2. 
  10. ^ Weiner S, Lowenstam HA. On biomineralization. Oxford [Oxfordshire]: Oxford University Press. 1989. ISBN 978-0-19-504977-0. 
  11. ^ 11.0 11.1 Cuif JP, Dauphin Y, Sorauf JE. Biominerals and fossils through time. Cambridge. 2011. ISBN 978-0-521-87473-1. 
  12. ^ Weaver JC, Aizenberg J, Fantner GE, Kisailus D, Woesz A, Allen P, et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology. April 2007, 158 (1): 93–106. PMID 17175169. doi:10.1016/j.jsb.2006.10.027. 
  13. ^ Nesbit KT, Roer RD. Silicification of the medial tooth in the blue crab Callinectes sapidus. Journal of Morphology. December 2016, 277 (12): 1648–1660. PMID 27650814. S2CID 46840652. doi:10.1002/jmor.20614. 
  14. ^ Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F. Grazing-induced changes in cell wall silicification in a marine diatom. Protist. January 2007, 158 (1): 21–28. PMID 17081802. doi:10.1016/j.protis.2006.09.002. 
  15. ^ Friedrichs L, Hörnig M, Schulze L, Bertram A, Jansen S, Hamm C. Size and biomechanic properties of diatom frustules influence food uptake by copepods. Marine Ecology Progress Series. 2013, 481: 41–51 [2022-11-05]. Bibcode:2013MEPS..481...41F. doi:10.3354/meps10227. (原始内容存档于2022-10-15). 
  16. ^ Desouky M, Jugdaohsingh R, McCrohan CR, White KN, Powell JJ. Aluminum-dependent regulation of intracellular silicon in the aquatic invertebrate Lymnaea stagnalis. Proceedings of the National Academy of Sciences of the United States of America. March 2002, 99 (6): 3394–3399. Bibcode:2002PNAS...99.3394D. PMC 122534 . PMID 11891333. doi:10.1073/pnas.062478699 . 
  17. ^ Neumann D, zur Nieden U. Silicon and heavy metal tolerance of higher plants. Phytochemistry. April 2001, 56 (7): 685–692. PMID 11314953. doi:10.1016/S0031-9422(00)00472-6. 
  18. ^ Milligan AJ, Morel FM. A proton buffering role for silica in diatoms. Science. September 2002, 297 (5588): 1848–1850. Bibcode:2002Sci...297.1848M. PMID 12228711. S2CID 206507070. doi:10.1126/science.1074958. 
  19. ^ Vinn O. Occurrence, formation and function of organic sheets in the mineral tube structures of Serpulidae (polychaeta, Annelida). PLOS ONE. 2013, 8 (10): e75330. Bibcode:2013PLoSO...875330V. PMC 3792063 . PMID 24116035. doi:10.1371/journal.pone.0075330 . 
  20. ^ Boskey AL. Biomineralization: conflicts, challenges, and opportunities. Journal of Cellular Biochemistry. 1998, 30–31 (S30-31): 83–91. PMID 9893259. S2CID 46004807. doi:10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F. 
  21. ^ Sarikaya M. Biomimetics: materials fabrication through biology. Proceedings of the National Academy of Sciences of the United States of America. December 1999, 96 (25): 14183–14185. Bibcode:1999PNAS...9614183S. PMC 33939 . PMID 10588672. doi:10.1073/pnas.96.25.14183 . 
  22. ^ 22.0 22.1 Hooper, John. Structure of Sponges. Queensland Museum. 2018 [27 September 2019]. (原始内容存档于26 September 2019). 
  23. ^ 23.0 23.1 Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, et al. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Developmental Biology. December 2006, 300 (1): 335–348. PMID 16987510. doi:10.1016/j.ydbio.2006.07.047 . 
  24. ^ Currey JD. The design of mineralised hard tissues for their mechanical functions. The Journal of Experimental Biology. December 1999, 202 (Pt 23): 3285–3294. PMID 10562511. doi:10.1242/jeb.202.23.3285. 
  25. ^ Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research. January 2007, 111 (Pt 1): 3–49. PMID 17307120. doi:10.1016/j.mycres.2006.12.001. 
  26. ^ Li Q, Gadd GM. Biosynthesis of copper carbonate nanoparticles by ureolytic fungi. Applied Microbiology and Biotechnology. October 2017, 101 (19): 7397–7407. PMC 5594056 . PMID 28799032. doi:10.1007/s00253-017-8451-x. 
  27. ^ Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM. Uranium phosphate biomineralization by fungi. Environmental Microbiology. June 2015, 17 (6): 2064–2075. PMID 25580878. S2CID 9699895. doi:10.1111/1462-2920.12771. 
  28. ^ Adeyemi AO, Gadd GM. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals. June 2005, 18 (3): 269–281. PMID 15984571. S2CID 35004304. doi:10.1007/s10534-005-1539-2. 
  29. ^ Fortin D. Geochemistry. What biogenic minerals tell us. Science. March 2004, 303 (5664): 1618–1619. PMID 15016984. S2CID 41179538. doi:10.1126/science.1095177. 
  30. ^ Komeili, Arash; Li, Zhuo; Newman, Dianne K.; Jensen, Grant J. Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK. Science (American Association for the Advancement of Science (AAAS)). 2006-01-13, 311 (5758): 242–245. ISSN 0036-8075. S2CID 36909813. doi:10.1126/science.1123231. 
  31. ^ Sorby, Henry Clifton. On the organic origin of the so-called 'Crystalloids' of the chalk. Annals and Magazine of Natural History. Ser. 3. 1861, 8 (45): 193–200 [2022-11-05]. doi:10.1080/00222936108697404. (原始内容存档于2022-11-05). 
  32. ^ Junqueira, Luiz Carlos; José Carneiro. Foltin, Janet; Lebowitz, Harriet; Boyle, Peter J. , 编. Basic Histology, Text & Atlas  10th. McGraw-Hill Companies. 2003: 144. ISBN 978-0-07-137829-1. Inorganic matter represents about 50% of the dry weight of bone ... crystals show imperfections and are not identical to the hydroxyapatite found in the rock minerals 
  33. ^ Demaster DJ. Marine Silica Cycle. Encyclopedia of Ocean Sciences. 2001: 1659–1667. ISBN 9780122274305. doi:10.1006/rwos.2001.0278. 
  34. ^ Sone ED, Weiner S, Addadi L. Biomineralization of limpet teeth: a cryo-TEM study of the organic matrix and the onset of mineral deposition. Journal of Structural Biology. June 2007, 158 (3): 428–444. PMID 17306563. doi:10.1016/j.jsb.2007.01.001. 
  35. ^ Foissner W, Weissenbacher B, Krautgartner WD, Lütz-Meindl U. A cover of glass: first report of biomineralized silicon in a ciliate, Maryna umbrellata (Ciliophora: Colpodea). The Journal of Eukaryotic Microbiology. 2009, 56 (6): 519–530. PMC 2917745 . PMID 19883440. doi:10.1111/j.1550-7408.2009.00431.x. 
  36. ^ Preisig HR. Siliceous structures and silicification in flagellated protists. Protoplasma. 1994, 181 (1–4): 29–42. S2CID 27698051. doi:10.1007/BF01666387. 
  37. ^ Pokroy B, Kabalah-Amitai L, Polishchuk I, DeVol RT, Blonsky AZ, Sun CY, Marcus MA, Scholl A, Gilbert PU. Narrowly Distributed Crystal Orientation in Biomineral Vaterite. Chemistry of Materials. 2015-10-13, 27 (19): 6516–6523. ISSN 0897-4756. S2CID 118355403. arXiv:1609.05449 . doi:10.1021/acs.chemmater.5b01542. 
  38. ^ Neues F, Hild S, Epple M, Marti O, Ziegler A. Amorphous and crystalline calcium carbonate distribution in the tergite cuticle of moulting Porcellio scaber (Isopoda, Crustacea) (PDF). Journal of Structural Biology. July 2011, 175 (1): 10–20 [2022-11-05]. PMID 21458575. doi:10.1016/j.jsb.2011.03.019. (原始内容存档 (PDF)于2022-10-17). 
  39. ^ Jacob DE, Wirth R, Agbaje OB, Branson O, Eggins SM. Planktic foraminifera form their shells via metastable carbonate phases. Nature Communications. November 2017, 8 (1): 1265. Bibcode:2017NatCo...8.1265J. PMC 5668319 . PMID 29097678. doi:10.1038/s41467-017-00955-0. 
  40. ^ Mass T, Giuffre AJ, Sun CY, Stifler CA, Frazier MJ, Neder M, et al. Amorphous calcium carbonate particles form coral skeletons. Proceedings of the National Academy of Sciences of the United States of America. September 2017, 114 (37): E7670–E7678. Bibcode:2017PNAS..114E7670M. PMC 5604026 . PMID 28847944. doi:10.1073/pnas.1707890114 . 
  41. ^ Raven JA, Giordano M. Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment?. Geobiology. March 2009, 7 (2): 140–154. PMID 19207569. S2CID 42962176. doi:10.1111/j.1472-4669.2008.00181.x. 
  42. ^ Patek SN, Caldwell RL. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. The Journal of Experimental Biology. October 2005, 208 (Pt 19): 3655–3664. PMID 16169943. S2CID 312009. doi:10.1242/jeb.01831 . 
  43. ^ Onozato H, Watabe N. Studies on fish scale formation and resorption. III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: Cyprinidae). Cell and Tissue Research. October 1979, 201 (3): 409–422. PMID 574424. S2CID 2222515. doi:10.1007/BF00236999. 
  44. ^ Habibah TU, Amlani DB, Brizuela M. Biomaterials, Hydroxyapatite. Stat Pearls. January 2018 [2018-08-12]. PMID 30020686. (原始内容存档于2020-03-28). 
  45. ^ Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization-remineralization dynamics in teeth and bone. International Journal of Nanomedicine. 2016, 11: 4743–4763. PMC 5034904 . PMID 27695330. doi:10.2147/IJN.S107624. 
  46. ^ 46.0 46.1 Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science. June 2012, 336 (6086): 1275–1280 [2017-12-02]. Bibcode:2012Sci...336.1275W. PMID 22679090. S2CID 8509385. doi:10.1126/science.1218764. (原始内容存档于2020-09-13). 
  47. ^ Joester D, Brooker LR. The Chiton Radula: A Model System for Versatile Use of Iron Oxides*. Faivre D (编). Iron Oxides 1st. Wiley. 2016-07-05: 177–206. ISBN 978-3-527-33882-5. doi:10.1002/9783527691395.ch8. 
  48. ^ Barber AH, Lu D, Pugno NM. Extreme strength observed in limpet teeth. Journal of the Royal Society, Interface. April 2015, 12 (105): 20141326. PMC 4387522 . PMID 25694539. doi:10.1098/rsif.2014.1326. 
  49. ^ Chen C, Linse K, Copley JT, Rogers AD. The 'scaly-foot gastropod': a new genus and species of hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae) from the Indian Ocean. Journal of Molluscan Studies. August 2015, 81 (3): 322–334. ISSN 0260-1230. doi:10.1093/mollus/eyv013 . 
  50. ^ 50.0 50.1 Le Moigne FA. Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump. Frontiers in Marine Science. 2019, 6. doi:10.3389/fmars.2019.00634 . 
  51. ^ Martin P, Allen JT, Cooper MJ, Johns DG, Lampitt RS, Sanders R, Teagle DA. Sedimentation of acantharian cysts in the Iceland Basin: Strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnology and Oceanography. 2010, 55 (2): 604–614. doi:10.4319/lo.2009.55.2.0604. 
  52. ^ Belcher A, Manno C, Thorpe S, Tarling G. Acantharian cysts: High flux occurrence in the bathypelagic zone of the Scotia Sea, Southern Ocean (PDF). Marine Biology. 2018, 165 (7) [2022-11-05]. S2CID 90349921. doi:10.1007/s00227-018-3376-1. (原始内容存档 (PDF)于2022-08-17). 
  53. ^ Kirschvink JL, Hagadorn JW. 10 A Grand Unified theory of Biomineralization.. Bäuerlein E (编). The Biomineralisation of Nano- and Micro-Structures. Weinheim, Germany: Wiley-VCH. 2000: 139–150. 
  54. ^ Porter S. The rise of predators. Geology. 2011, 39 (6): 607–608. Bibcode:2011Geo....39..607P. doi:10.1130/focus062011.1 . 
  55. ^ Cohen PA, Schopf JW, Butterfield NJ, Kudryavtsev AB, Macdonald FA. Phosphate biomineralization in mid-Neoproterozoic protists. Geology. 2011, 39 (6): 539–542. Bibcode:2011Geo....39..539C. S2CID 32229787. doi:10.1130/G31833.1. 
  56. ^ Maloof AC, Rose CV, Beach R, Samuels BM, Calmet CC, Erwin DH, et al. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience. 2010, 3 (9): 653–659. Bibcode:2010NatGe...3..653M. S2CID 13171894. doi:10.1038/ngeo934. 
  57. ^ Wood RA, Grotzinger JP, Dickson JA. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science. June 2002, 296 (5577): 2383–2386. Bibcode:2002Sci...296.2383W. PMID 12089440. S2CID 9515357. doi:10.1126/science.1071599. 
  58. ^ 58.0 58.1 Zhuravlev AY, Wood RA. Eve of biomineralization: Controls on skeletal mineralogy (PDF). Geology. 2008, 36 (12): 923 [2022-11-05]. Bibcode:2008Geo....36..923Z. doi:10.1130/G25094A.1. (原始内容存档 (PDF)于2016-03-04). 
  59. ^ Porter SM. Seawater chemistry and early carbonate biomineralization. Science. June 2007, 316 (5829): 1302. Bibcode:2007Sci...316.1302P. PMID 17540895. S2CID 27418253. doi:10.1126/science.1137284. 
  60. ^ Maloof AC, Porter SM, Moore JL, Dudás FÖ, Bowring SA, Higgins JA, Fike DA, Eddy MP. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin. 2010, 122 (11–12): 1731–1774. Bibcode:2010GSAB..122.1731M. S2CID 6694681. doi:10.1130/B30346.1. 
  61. ^ Murdock DJ, Donoghue PC. Evolutionary origins of animal skeletal biomineralization. Cells Tissues Organs. 2011, 194 (2–4): 98–102. PMID 21625061. S2CID 45466684. doi:10.1159/000324245. 
  62. ^ 62.0 62.1 Westbroek P, Marin F. A marriage of bone and nacre. Nature. April 1998, 392 (6679): 861–862. Bibcode:1998Natur.392..861W. PMID 9582064. S2CID 4348775. doi:10.1038/31798 . 
  63. ^ Jackson DJ, Macis L, Reitner J, Degnan BM, Wörheide G. Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science. June 2007, 316 (5833): 1893–1895. Bibcode:2007Sci...316.1893J. PMID 17540861. S2CID 7042860. doi:10.1126/science.1141560. 
  64. ^ 64.0 64.1 Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, et al. Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution. March 2010, 27 (3): 591–608. PMID 19915030. doi:10.1093/molbev/msp278 . 
  65. ^ Marin F, Smith M, Isa Y, Muyzer G, Westbroek P. Skeletal matrices, muci, and the origin of invertebrate calcification. Proceedings of the National Academy of Sciences of the United States of America. February 1996, 93 (4): 1554–1559. Bibcode:1996PNAS...93.1554M. PMC 39979 . PMID 11607630. doi:10.1073/pnas.93.4.1554 . 
  66. ^ Lowenstam HA, Margulis L. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. Bio Systems. 1980, 12 (1–2): 27–41. PMID 6991017. doi:10.1016/0303-2647(80)90036-2. 
  67. ^ Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evolutionary Biology. July 2009, 9 (1): 178. PMC 2726143 . PMID 19638240. doi:10.1186/1471-2148-9-178. 
  68. ^ Wernström JV, Gąsiorowski L, Hejnol A. Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid-bryozoan stem lineage. EvoDevo. September 2022, 13 (1): 17. PMC 9484238 . PMID 36123753. doi:10.1186/s13227-022-00202-8. 
  69. ^ Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. 2001 [2022-11-05]. ISBN 9780198508823. (原始内容存档于2022-11-12). 
  70. ^ Raven JA, Waite AM. The evolution of silicification in diatoms: Inescapable sinking and sinking as escape?. New Phytologist. 2004, 162 (1): 45–61. doi:10.1111/j.1469-8137.2004.01022.x. 
  71. ^ Finkel ZV, Kotrc B. Silica Use Through Time: Macroevolutionary Change in the Morphology of the Diatom Fustule. Geomicrobiology Journal. 2010, 27 (6–7): 596–608. S2CID 85218013. doi:10.1080/01490451003702941. 
  72. ^ Raven JA. The Transport and Function of Silicon in Plants. Biological Reviews. 1983, 58 (2): 179–207. S2CID 86067386. doi:10.1111/j.1469-185X.1983.tb00385.x. 
  73. ^ 73.0 73.1 Sigel A, Sigel H, Sigel RK. Biomineralization: From Nature to Application. 30 April 2008 [2022-11-05]. ISBN 9780470986318. (原始内容存档于2022-11-12). 
  74. ^ 74.0 74.1 Aparicio C, Ginebra MP. Biomineralization and Biomaterials: Fundamentals and Applications. 28 September 2015 [2022-11-05]. ISBN 9781782423560. (原始内容存档于2022-11-12). 
  75. ^ Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Architecture and material properties of diatom shells provide effective mechanical protection (PDF). Nature. February 2003, 421 (6925): 841–843 [2022-11-05]. Bibcode:2003Natur.421..841H. PMID 12594512. S2CID 4336989. doi:10.1038/nature01416. (原始内容存档 (PDF)于2022-10-17). 
  76. ^ Aitken ZH, Luo S, Reynolds SN, Thaulow C, Greer JR. Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule. Proceedings of the National Academy of Sciences of the United States of America. February 2016, 113 (8): 2017–2022. Bibcode:2016PNAS..113.2017A. PMC 4776537 . PMID 26858446. doi:10.1073/pnas.1519790113 . 
  77. ^ Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, et al. Nanostructural Organization of Naturally Occurring Composites—Part I: Silica-Collagen-Based Biocomposites. Journal of Nanomaterials. 2008, 2008: 1–8. doi:10.1155/2008/623838 . 
  78. ^ Shimizu K, Amano T, Bari MR, Weaver JC, Arima J, Mori N. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proceedings of the National Academy of Sciences of the United States of America. September 2015, 112 (37): 11449–11454. Bibcode:2015PNAS..11211449S. PMC 4577155 . PMID 26261346. doi:10.1073/pnas.1506968112 . 
  79. ^ Jonkers HM. Self healing concrete: a biological approach. van der Zwaag S (编). Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science. Springer. 2007: 195–204 [2022-11-05]. ISBN 9781402062506. (原始内容存档于2022-11-12). 
  80. ^ US 8728365,Dosier GK,「Methods for making construction material using enzyme producing bacteria」,发行于2014,指定于Biomason Inc. 
  81. ^ Rubinstein SM, Kolodkin-Gal I, McLoon A, Chai L, Kolter R, Losick R, Weitz DA. Osmotic pressure can regulate matrix gene expression in Bacillus subtilis. Molecular Microbiology. October 2012, 86 (2): 426–436. PMC 3828655 . PMID 22882172. doi:10.1111/j.1365-2958.2012.08201.x. 
  82. ^ Chan JM, Guttenplan SB, Kearns DB. Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. Journal of Bacteriology. February 2014, 196 (4): 740–753. PMC 3911173 . PMID 24296669. doi:10.1128/JB.01217-13. 
  83. ^ Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I. Architects of nature: growing buildings with bacterial biofilms. Microbial Biotechnology. September 2017, 10 (5): 1157–1163. PMC 5609236 . PMID 28815998. doi:10.1111/1751-7915.12833. 
  84. ^ Newsome L, Morris K, Lloyd JR. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology. 2014, 363: 164–184. Bibcode:2014ChGeo.363..164N. doi:10.1016/j.chemgeo.2013.10.034 . 
  85. ^ Lloyd JR, Macaskie LE. Environmental microbe-metal interactions: Bioremediation of radionuclide-containing wastewaters. Washington, DC: ASM Press. 2000: 277–327. ISBN 978-1-55581-195-2. 
  86. ^ Steele A, Beaty D (编). Final report of the MEPAG Astrobiology Field Laboratory Science Steering Group (AFL-SSG) (.doc). The Astrobiology Field Laboratory. U.S.A.: Mars Exploration Program Analysis Group (MEPAG) - NASA. September 26, 2006: 72 [2009-07-22]. (原始内容存档于2020-05-11).