体能锻炼

身體活動
(重定向自體能鍛鍊

体能锻炼,又称体能训练体适能训练,泛指所有通过运动方式,来达到维持与发展适当体能、增进身体健康的身体活动。它的目标有许多种,包括:增强肌肉循环系统、增进运动技能与身体体能、减重或维持体重或是单纯的休闲等等。规律而定时的进行体能训练,有助于活化身体的免疫系统、预防或改善一些文明病,例如:心血管疾病2型糖尿病以及肥胖,也可以改善心理健康、减轻忧郁、增进对压力的抵抗能力、改善睡眠品质、改善失眠问题、有助于形成正面的自尊

进行三项全能运动的选手

种类

编辑
  • 有氧运动:泛指任何能运用到大量肌肉组织且能让身体与此同时消耗比平常更多氧气的活动[1]
    此类运动的目的之一为增强心肺功能及耐力[2]
  • 无氧运动:泛指能在短时间内促进乳酸在体内迅速生成的运动。这类的运动通常用来促进身体瞬间的爆发力。[3]
 
无氧运动(Anaerobic exercise)

体能锻炼与身心健康

编辑

规律的运动是维持健康的关键之一,而且对于保持健康体重消化系统骨密度肌肉能力、关节自由活动、生理功能、降低往后需要面临手术治疗的几率以及强化免疫系统有着显著的贡献。迄今许多文献表明:规律的运动可能增加一个人的预期寿命及整体的生活品质[5]

有规律运动且其运动强度大达到大约中[注 3]、中强、强的程度的人,相对于没有规律运动习惯的人,可能有较低的死亡率、较低的老化(氧化)速度及减少体内发炎的几率[6][7]

要能获得大部分运动的好处,那么可能需要达成“在一周内达到大约3500代谢当量(MET)”的门槛[8]

举例来说:一天需要达成下方所举的例子且连续七天才能满足“在一周内达到大约3500代谢当量”的门槛:“爬楼梯达十分钟、打扫环境达15分钟、整理花园达20分钟、跑步20分钟、走路/骑脚踏车通勤达25分钟”[8]

缺乏运动者将比对照组增加6%的几率罹患心血管疾病、7%的几率罹患糖尿病、10%的几率罹患乳癌、10%的几率罹患大肠直肠癌(此发现与地区、国别无关。)[9]

“缺乏规律运动”约造成世界上9%的人实际寿命低于其预期寿命[9]

心脏血管系统

编辑

运动对于心脏血管系统的益处已经被广泛地证实。“缺乏运动”不仅为冠状动脉疾病的独立危险因子,且其缺乏程度与“心血管疾病”的发生率成正相关[10]

免疫系统

编辑

流行病学的文献指出适度的运动有助于增强身体的抵抗力。“适量的运动”与“免疫力的提升”的关系可以用J曲线英语J curve来表示。适度的运动能降低29%上呼吸道感染(URTI)的几率。然而有些研究在运动选手选手身上发现,他们“长时间高强度的运动”与“淋巴细胞”的受迫率、“免疫细胞”的受损率及“疾病感染率”的增加有关;不过目前学界尚未就此做出结论[11]

慢性疾病有关的发炎反应的生物标记群,例如:C-反应蛋白,在数量上,“有运动习惯者”比起“没有运动习惯者”来得少。这可能是因为运动具有抗发炎的效果。

在有心脏疾病的人身上发现,增加规律运动的习惯可以降低两个重要的心血管疾病致病因子的血液浓度,分别是:纤维蛋白原(产生于肝脏,能转化为纤维蛋白,当人体组织受到损坏时,起凝血作用)和C-反应蛋白[12]

癌症

编辑

一个类型为系统性回顾论文分析了45篇有关运动与癌症存活关联性的论文后发现共有27篇论文支持“运动能降低癌症的致死率”的论点。[13]

表关遗传效应

编辑

规律的运动与两个分别是恶性肿瘤抑制基因的CACNA2D3英语CACNA2D3L3MBTL英语L3MBTL的低甲基频率成正相关。[14][15]

恶病质

编辑

恶病质是一个多重器官的疾病且与癌症的发生有关。恶病质会造成发炎、体重减轻(至少5%)和肌肉脂肪组织的莫名耗损。[16]

与大脑神经元(脑功能)的关联

编辑

运动对于脑内神经元的影响相当大且影响范围涵盖大脑内部结构、大脑功能、以及认知功能 [17][18][19][20]。 大量的人体研究证明持之以恒的有氧运动(比如说:每天30分钟的有氧运动),脑部的认知功能将有持续性的进步,且脑中基因的基因表现将逐渐朝健康的方向修正(健康的演化),除此之外,脑中神经元将逐渐回到富有可塑性的年轻型态,如此将使一个人无论在思考上及行为上更富有灵活英语behavior plasticity。这些进展的长远收益包括但不限于:神经元增长英语adult neurogenesis加速、神经元的活性增加(例如:c-Fos英语c-Fos脑源性神经营养因子 BDNF在脑中讯号量的增加、增强)、更有能力应对压力、更优的认知能力来管理自己的言行、外显记忆空间记忆工作记忆的提升、脑部结构与功能的改善、与认知管理与记忆相关的神经传导通道英语neural pathways(neural pathways)及其结构和功能的优化。[17][18] [19][20] [21][22][23][24][25][26]

有规律适度的运动对于大脑的认知功能具有许多重要的好处,其意义在于:学生可能获得更好的学业表现英语academic performance、思考或做事变得更有效率、为自己的老年时期储备认知功能、防止或治疗某些与脑神经变异有关的疾病英语neurological disorder、以及让自己迎接更好的生活品质。[17] [27][28]

有适度规律地做有氧运动(比如跑步 、慢跑 、快步走、游泳和骑脚踏车等)的人通常在旨在测量一个人某些认知功能,例如:注意力管理英语attentional contro冲动管理认知弹性英语cognitive flexibility工作记忆的能力与更新、宣告记忆空间记忆脑中的资讯处理速度神经心理测验英语neuropsychological test中获得较好的表现。[17][21][23][25][26]

有氧运动也是一个强效的抗忧郁剂欣快感促进剂[29][30][31][32] 所以适度且规律持续的有氧运动将有助于一个人维持良好的心情自尊[33][34]

适度且规律的有氧运动有助于改善许多中枢神经系统疾患的症状,而且可能可用做治疗这些疾病的附加疗法英语adjunct therapy。明确的证据指出适度且规律的有氧运动是治疗重性抑郁障碍[27][31][35][36]以及注意力不足过动症(ADHD)的一个有效疗法。[37][38]

很多临床试验的前期英语preclinical证据和临床证据支持“若将适度且规律的有氧运动当成一种疗法,则此疗法能预防及治疗药物成瘾”。[39][40][41][42][43]

回顾许多临床证据的结果均显示将适度且规律的有氧运动当成某些退化性脑部疾病的附加疗法是正确的,因为确实具有疗效,特别是对于阿兹海默症[44][45]巴金森氏症[46][47][48][49]

规律的运动能降低神经退化疾病发生的几率或恶化的速度。[47][50] 规律的运动也被提案作为脑癌患者的附加疗法英语adjunct therapy[51]

睡眠

编辑

一个于2010年发布的系统性回顾表明:运动整体来说能提升绝大多数人的睡眠品质,并改善睡眠疾病,例如:失眠。

较佳的运动时间可能落在睡前四到八小时。虽然在任何时间运动对身体都是有益的,但如果在睡前紧接着剧烈运动则可能干擾稍后的睡眠品质。 至于“睡眠”与“运动”两者之间更详细的关系则尚待更多研究的成果来诠释。[52]

根据一个2005年出炉的研究,运动是服用安眠药最好的替代方案。“规律且适度的有氧运动”所需付出的成本(包含:金钱、可能的副作用)远低于服用安眠药。“规律且适度的有氧运动”带来的益处也多于安眠药,不仅止于助眠。[53]

过度的运动

编辑

过度的运动是有害的。倘若缺乏适度的休息,中风及其他循环系统出问题的几率将升高[54] ,而且肌肉组织的发育将减慢。 长期且重度的心肺运动(例如:部分挑战各式各样马拉松的运动员),可能会造成心脏结痂以及心律不整等问题。 [55][56][57] 具体来说,过度的心脏动力输出已经有证据显示将导致左右心室的体积变大、心室壁增厚、心脏的重量加大。 这些改变会进一步伤害心脏黏膜的心肌细胞,导致细胞组织结痂以及血管壁的肥厚。 在这些过程中,象征心肌细胞死亡的肌钙蛋白被释放到血液中,而这将再加重对心脏本身的负担。 [58]

不适当的运动是弊大于利的,然而“适当”与否因人而异。许多运动若未依照个人的体能状况做调节,往往会导致严重的受伤。运动过程中发生的意外,也是导致受伤的一大原因。 [59] 值得一提的是,空气污染对于运动员所造成的伤害似乎不若前者来得大。 [60][61]

在极端个例中,运动过量造成了严重的身体机能下降。非寻常的过度使用肌肉可能会导致横纹肌溶解症,这种情况常见于新兵训练。[62] 另一个危险是过度训练英语overtraining,其定义是当训练的“质(强度)”与“量(运动量)”超越身体的能耐而导致身体出现无法回复的伤害。过度训练症候群的一个征兆是“受抑制的免疫功能”,通常伴随越发明显的上呼吸道感染(URTI)。URTI也与过度的运动相关。过度的运动常见于马拉松[63]

骤然停止原有的“过度运动”的型态,可能会引响心情。 运动必须依照一个人的生理、心理条件来做选择与调适(节)。 有些人的关节与肌肉等组织结构足以抵御重度的马拉松;然而也有些人的身体强度不足以抵御超过二十分钟的轻度马拉松。因此运动类型、型态的选择及运动量皆因人而异。

过多的运动可能会导致女性的月经周期改变,引起月经关闭(俗称闭经)[64] 。 这满严重的,因为这意味着该女性运动者正在以不合理的方式使自己的体能超越原有的极限[65]

营养和收操

编辑

适当的营养对于运动或维持健康来说都很重要,据2018年调查健身餐内容物,豆浆、牛奶是除了乳清之外最受欢迎的两个饮品,肉类方面以鸡胸、鱼、鸡腿为大宗,蔬果的讨论度相对于肉类低,除此之外地瓜、燕麦、麦片也是热门食物选择,烹饪方式多为水煮。[66]

机转

编辑

中枢神经系统

编辑

规律的体能训练对于中枢神经系统所产生的长期且持续的效应被认为是因为运动时许多神经营养因子(例如脑源性神经营养因子胰岛素样生长因子(IGF-1)、血管内皮生长因子(VEGF)、及 神经胶细胞神经营养因子英语Glial cell line-derived neurotrophic factor(GDNF),和其他在周边(相对于中枢神经系统血浆中的生物分子

注释

编辑
  1. ^ 例如:劈腿与无劈腿间肢体伸展范围上的差异。
  2. ^ 例如:拉伤等。
  3. ^ 中度约指运动过程中感到稍微喘,不太能聊天。

参考文献

编辑
  1. ^ 1.0 1.1 1.2 National Institutes of Health, National Heart, Lung, and Blood Institute. Your Guide to Physical Activity and Your Heart (PDF). U.S. Department of Health and Human Services. June 2006 [2017-03-04]. (原始内容存档 (PDF)于2013-11-26). 
  2. ^ Wilmore J.; Knuttgen H. Aerobic Exercise and Endurance Improving Fitness for Health Benefits. The Physician and Sports medicine. 2003, 31 (5): 45. doi:10.3810/psm.2003.05.367. 
  3. ^ Medbo, JI; Mohn, AC; Tabata, I; Bahr, R; Vaage, O; Sejersted, OM. Anaerobic capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology. January 1988, 64 (1): 50–60 [14 May 2011]. (原始内容存档于2016-11-18). 
  4. ^ O'Connor D.; Crowe M.; Spinks W. Effects of static stretching on leg capacity during cycling. Turin. 2005, 46 (1): 52–56. 
  5. ^ Gremeaux, V; Gayda, M; Lepers, R; Sosner, P; Juneau, M; Nigam, A. Exercise and longevity.. Maturitas. December 2012, 73 (4): 312–7. PMID 23063021. doi:10.1016/j.maturitas.2012.09.012. 
  6. ^ Department Of Health And Human Services, United States. Physical Activity and Health. United States Department of Health. 1996. ISBN 9781428927940. 
  7. ^ Woods, Jeffrey A.; Wilund, Kenneth R.; Martin, Stephen A.; Kistler, Brandon M. Exercise, Inflammation and Aging. Aging and Disease. 2011-10-29, 3 (1): 130–140. ISSN 2152-5250. PMC 3320801 . PMID 22500274. 
  8. ^ 8.0 8.1 Kyu, Hmwe H; Bachman, Victoria F; Alexander, Lily T; Mumford, John Everett; Afshin, Ashkan; Estep, Kara; Veerman, J Lennert; Delwiche, Kristen; Iannarone, Marissa L; Moyer, Madeline L; Cercy, Kelly; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ (systematic review: secondary source). 9 August 2016: i3857. doi:10.1136/bmj.i3857. 
  9. ^ 9.0 9.1 Lee, I-Min; Shiroma, Eric J; Lobelo, Felipe; Puska, Pekka; Blair, Steven N; Katzmarzyk, Peter T. Impact of Physical Inactivity on the World’s Major Non-Communicable Diseases. Lancet. 2012-07-21, 380 (9838): 219–229. ISSN 0140-6736. PMC 3645500 . PMID 22818936. doi:10.1016/S0140-6736(12)61031-9. 
  10. ^ Physical Activity and Health. Diane Publishing. 1996. 
  11. ^ Goodman, C. C.; Kapasi, Z. F. The effect of exercise on the immune system. Rehabilitation Oncology. 2002. 
  12. ^ Swardfager W. Exercise intervention and inflammatory markers in coronary artery disease: a meta-analysis.. Am. Heart J. (systematic review: secondary source). 2012, 163 (4): 666–76 [2017-03-04]. PMID 22520533. doi:10.1016/j.ahj.2011.12.017. (原始内容存档于2015-09-24). 
  13. ^ Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan A, Alfano CM. Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review. JNCI Journal of the National Cancer Institute (systematic review: secondary source). 2012, 104 (11): 815–840. PMC 3465697 . PMID 22570317. doi:10.1093/jnci/djs207. 
  14. ^ Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, et al. DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int. J. Cancer. 2009, 124 (11): 2677–82. PMID 19170207. doi:10.1002/ijc.24231. 
  15. ^ Zeng H, Irwin ML, Lu L, Risch H, Mayne S, Mu L, Deng Q, Scarampi L, Mitidieri M, Katsaros D, Yu H. Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1. Breast Cancer Res Treat. May 2012, 133 (1): 127–35. PMID 21837478. doi:10.1007/s10549-011-1716-7. 
  16. ^ Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008, 27 (6): 793–799. PMID 18718696. doi:10.1016/j.clnu.2008.06.013. 
  17. ^ 17.0 17.1 17.2 17.3 Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences. August 2015, 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. 
  18. ^ 18.0 18.1 Paillard T, Rolland Y, de Souto Barreto P. Protective Effects of Physical Exercise in Alzheimer's Disease and Parkinson's Disease: A Narrative Review. J Clin Neurol (literature review: secondary source.). July 2015, 11 (3): 212–219. PMC 4507374 . PMID 26174783. doi:10.3988/jcn.2015.11.3.212. 
  19. ^ 19.0 19.1 McKee AC, Daneshvar DH, Alvarez VE, Stein TD. The neuropathology of sport. Acta Neuropathol. January 2014, 127 (1): 29–51. PMC 4255282 . PMID 24366527. doi:10.1007/s00401-013-1230-6. 
  20. ^ 20.0 20.1 Denham J, Marques FZ, O'Brien BJ, Charchar FJ. Exercise: putting action into our epigenome. Sports Med. February 2014, 44 (2): 189–209. PMID 24163284. doi:10.1007/s40279-013-0114-1. 
  21. ^ 21.0 21.1 Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr. Physiol. January 2013, 3 (1): 403–428. PMC 3951958 . PMID 23720292. doi:10.1002/cphy.c110063. 
  22. ^ Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol. Aging. September 2014,. 35 Suppl 2: S20–528 [9 December 2014]. PMC 4094356 . PMID 24952993. doi:10.1016/j.neurobiolaging.2014.03.034. 
  23. ^ 23.0 23.1 Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev. February 2013, 20 (1): 73–86. PMID 23229442. doi:10.3758/s13423-012-0345-4. 
  24. ^ Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist. 2012, 18 (1): 82–97. PMC 3575139 . PMID 21531985. doi:10.1177/1073858410397054. 
  25. ^ 25.0 25.1 Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP. Cognitive control in the self-regulation of physical activity and sedentary behavior. Front Hum Neurosci. 2014, 8: 747. PMC 4179677 . PMID 25324754. doi:10.3389/fnhum.2014.00747. 
  26. ^ 26.0 26.1 Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, O'Connor H. Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. J. Sci. Med. Sport (systematic review (secondary source)). August 2016, 19 (8): 616–628. PMID 26552574. doi:10.1016/j.jsams.2015.09.003. 
  27. ^ 27.0 27.1 Schuch FB, Vancampfort D, Rosenbaum S, Richards J, Ward PB, Stubbs B. Exercise improves physical and psychological quality of life in people with depression: A meta-analysis including the evaluation of control group response. Psychiatry Res. (meta-analysis (secondary source)). July 2016, 241: 47–54. PMID 27155287. doi:10.1016/j.psychres.2016.04.054. 
  28. ^ Pratali L, Mastorci F, Vitiello N, Sironi A, Gastaldelli A, Gemignani A. Motor Activity in Aging: An Integrated Approach for Better Quality of Life. Int. Sch. Res. Notices. November 2014, 2014: 257248. PMC 4897547 . PMID 27351018. doi:10.1155/2014/257248. 
  29. ^ Cunha GS, Ribeiro JL, Oliveira AR. [Levels of beta-endorphin in response to exercise and overtraining]. Arq Bras Endocrinol Metabol. June 2008, 52 (4): 589–598. PMID 18604371 (葡萄牙语). 
  30. ^ Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tolle TR. The runner's high: opioidergic mechanisms in the human brain. Cereb. Cortex. 2008, 18 (11): 2523–2531. PMID 18296435. doi:10.1093/cercor/bhn013. 
  31. ^ 31.0 31.1 Josefsson T, Lindwall M, Archer T. Physical exercise intervention in depressive disorders: meta-analysis and systematic review. Scand J Med Sci Sports (meta-analysis (secondary source)). 2014, 24 (2): 259–272. PMID 23362828. doi:10.1111/sms.12050. 
  32. ^ Rosenbaum S, Tiedemann A, Sherrington C, Curtis J, Ward PB. Physical activity interventions for people with mental illness: a systematic review and meta-analysis. J Clin Psychiatry (meta-analysis (secondary source)). 2014, 75 (9): 964–974. PMID 24813261. doi:10.4088/JCP.13r08765. 
  33. ^ Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. October 2014, 60C: 56–64. PMC 4314337 . PMID 25455510. doi:10.1016/j.jpsychires.2014.10.003. 
  34. ^ Lees C, Hopkins J. Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: a systematic review of randomized control trials. Prev Chronic Dis. 2013, 10: E174. PMC 3809922 . PMID 24157077. doi:10.5888/pcd10.130010. 
  35. ^ Mura G, Moro MF, Patten SB, Carta MG. Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review. CNS Spectr. 2014, 19 (6): 496–508. PMID 24589012. doi:10.1017/S1092852913000953. 
  36. ^ Ranjbar E, Memari AH, Hafizi S, Shayestehfar M, Mirfazeli FS, Eshghi MA. Depression and Exercise: A Clinical Review and Management Guideline. Asian J. Sports Med. (tertiary source). June 2015, 6 (2): e24055. PMC 4592762 . PMID 26448838. doi:10.5812/asjsm.6(2)2015.24055. 
  37. ^ Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review. J. Neural. Transm. (Vienna) (systematic review (secondary source)). July 2016 [2017-03-04]. PMID 27400928. doi:10.1007/s00702-016-1593-7. (原始内容存档于2021-04-09). 
  38. ^ Kamp CF, Sperlich B, Holmberg HC. Exercise reduces the symptoms of attention-deficit/hyperactivity disorder and improves social behaviour, motor skills, strength and neuropsychological parameters. Acta Paediatr. July 2014, 103 (7): 709–14. PMID 24612421. doi:10.1111/apa.12628. 
  39. ^ Carroll ME, Smethells JR. Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments. Front. Psychiatry. February 2016, 6: 175. PMC 4745113 . PMID 26903885. doi:10.3389/fpsyt.2015.00175. 
  40. ^ Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev. September 2013, 37 (8): 1622–1644. PMC 3788047 . PMID 23806439. doi:10.1016/j.neubiorev.2013.06.011. 
  41. ^ Olsen CM. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology. December 2011, 61 (7): 1109–1122. PMC 3139704 . PMID 21459101. doi:10.1016/j.neuropharm.2011.03.010. 
  42. ^ Linke SE, Ussher M. Exercise-based treatments for substance use disorders: evidence, theory, and practicality. Am J Drug Alcohol Abuse. 2015, 41 (1): 7–15. PMID 25397661. doi:10.3109/00952990.2014.976708. 
  43. ^ Zhou Y, Zhao M, Zhou C, Li R. Sex differences in drug addiction and response to exercise intervention: From human to animal studies. Front. Neuroendocrinol. July 2015, 40: 24–41. PMID 26182835. doi:10.1016/j.yfrne.2015.07.001. 
  44. ^ Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int Psychogeriatr. January 2014, 26 (1): 9–18. PMID 23962667. doi:10.1017/S1041610213001385. 
  45. ^ Rao AK, Chou A, Bursley B, Smulofsky J, Jezequel J. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer's disease. Am J Occup Ther. January 2014, 68 (1): 50–56. PMID 24367955. doi:10.5014/ajot.2014.009035. 
  46. ^ Mattson MP. Interventions that improve body and brain bioenergetics for Parkinson's disease risk reduction and therapy. J Parkinsons Dis. 2014, 4 (1): 1–13. PMID 24473219. doi:10.3233/JPD-130335. 
  47. ^ 47.0 47.1 Grazina R, Massano J. Physical exercise and Parkinson's disease: influence on symptoms, disease course and prevention. Rev Neurosci. 2013, 24 (2): 139–152. PMID 23492553. doi:10.1515/revneuro-2012-0087. 
  48. ^ van der Kolk NM, King LA. Effects of exercise on mobility in people with Parkinson's disease. Mov. Disord. September 2013, 28 (11): 1587–1596. PMID 24132847. doi:10.1002/mds.25658. 
  49. ^ Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, Shah L, Sackley CM, Deane KH, Wheatley K, Ives N. Physiotherapy versus placebo or no intervention in Parkinson's disease. Cochrane Database Syst Rev. September 2013, 9: CD002817. PMID 24018704. doi:10.1002/14651858.CD002817.pub4. 
  50. ^ Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health. May 2014, 14: 510. PMC 4064273 . PMID 24885250. doi:10.1186/1471-2458-14-510. 
  51. ^ Cormie P, Nowak AK, Chambers SK, Galvão DA, Newton RU. The potential role of exercise in neuro-oncology. Front. Oncol. April 2015, 5: 85. PMC 4389372 . PMID 25905043. doi:10.3389/fonc.2015.00085. 
  52. ^ Buman, M.P., King, A.C. Exercise as a Treatment to Enhance Sleep. American Journal of Lifestyle Medicine. 2010, 31 (5): 514. doi:10.1177/1559827610375532. 
  53. ^ Youngstedt, S.D. Effects of exercise on sleep (PDF). Clin Sports Med. April 2005, 24 (2): 355–65, xi [9 April 2012]. doi:10.1016/j.csm.2004.12.003. (原始内容 (PDF)存档于2013-11-25). 
  54. ^ Alexander, C. Cutting weight, losing life.. News & Observer, February 8 (ProQuest database.). 1998. 
  55. ^ Möhlenkamp S, Lehmann N, Breuckmann F, Bröcker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jöckel KH, Erbel R. Running: the risk of coronary events : Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur. Heart J. 2008, 29 (15): 1903–10. PMID 18426850. doi:10.1093/eurheartj/ehn163. 
  56. ^ Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, Brugada J, Nattel S, Mont L. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation. 2011, 123 (1): 13–22. PMID 21173356. doi:10.1161/CIRCULATIONAHA.110.938282. 
  57. ^ Wilson M, O'Hanlon R, Prasad S, Deighan A, Macmillan P, Oxborough D, Godfrey R, Smith G, Maceira A, Sharma S, George K, Whyte G. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011, 110 (6): 1622–6. PMC 3119133 . PMID 21330616. doi:10.1152/japplphysiol.01280.2010. 
  58. ^ O'Keefe JH, Patil HR, Lavie CJ, Magalski A, Vogel RA, McCullough PA. Potential Adverse Cardiovascular Effects from Excessive Endurance Exercise. Mayo Clinic Proceedings. 2012, 87 (6): 587–595. PMC 3538475 . PMID 22677079. doi:10.1016/j.mayocp.2012.04.005. 
  59. ^ Aertsens J, de Geus B, Vandenbulcke G, Degraeuwe B, Broekx S, De Nocker L, Liekens I, Mayeres I, Meeusen R, Thomas I, Torfs R, Willems H, Int Panis L. Commuting by bike in Belgium, the costs of minor accidents. Accident Analysis and Prevention. 2010, 42 (6): 2149–2157. PMID 20728675. doi:10.1016/j.aap.2010.07.008. 
  60. ^ Int Panis, L; De Geus, Bas; Vandenbulcke, GréGory; Willems, Hanny; Degraeuwe, Bart; Bleux, Nico; Mishra, Vinit; Thomas, Isabelle; Meeusen, Romain. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmospheric Environment. 2010, 44 (19): 2263–2270. doi:10.1016/j.atmosenv.2010.04.028. 
  61. ^ Jacobs L, Nawrot TS, de Geus B, Meeusen R, Degraeuwe B, Bernard A, Sughis M, Nemery B, Panis LI. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution. Environmental Health. Oct 2010, 9 (64): 64 [2017-03-04]. PMC 2984475 . PMID 20973949. doi:10.1186/1476-069X-9-64. (原始内容存档于2015-11-27). 
  62. ^ Jimenez C.; Pacheco E.; Moreno A.; Carpenter A. A Soldier's Neck and Shoulder Pain. The Physician and Sportsmedicine. 1996, 24 (6): 81–82. doi:10.3810/psm.1996.06.1384. 
  63. ^ Smith L.L. Overtraining, excessive exercise, and altered immunity, 2003.. Sports Medicine. 2003, 33 (5): 347–364. doi:10.2165/00007256-200333050-00002. 
  64. ^ Furia, John. The Female Athlete Triad. Medscape.com. (原始内容存档于2021-04-09). 
  65. ^ 存档副本. [2017-03-04]. (原始内容存档于2018-09-29). 
  66. ^ 2018年健身輿情分析. 2018-06-15. (原始内容存档于2019-12-12). 

参见

编辑