HiWish美国航空航天局创立的一项计划,其宗旨是动员所有人为火星勘测轨道飞行器上的高分辨率成像科学设备相机推荐一处拍摄地点[1][2][3]。该计划于2010年1月启动。在启动后的头几个月内,曾有3000人注册使用高分辨率成像科学设备[4][5],首批图像于2010年4月发布[6]。公众先后提出过12000多条建议,对火星上30个分区都提出了各自的目标。在第16届国际火星协会年会上,这些推荐拍摄的图像被用于三次演讲。以下是截至2016年3月HiWish计划发布的4224张图片中的一部分[7]

冰川特征

编辑

有些景观看上去类似地球上冰川流过的谷道,就像所有积冰消融后,谷底只剩下划痕和冰碛—冰川携带的泥土和碎屑的空谷[8]。这些所谓的高山冰川被称作类冰川形态(GLF)或类冰川流(GLF)[9]。类冰川形态是一条更晚的术语,可能更准确,因为无法确定这类结构当前是否还在移动[10]

,

沿山谷往下流动的火星冰川

当作用力穿透脆性层时,通常可看到放射和同心状裂纹,比如被石头砸破的玻璃窗,这些特殊的裂缝可能是火星脆性表面下出现的某些东西所造成。水冰可能呈镜面状积聚在地表下,冰的密度比岩石小,当被推升到到表面后,就会呈现蜘蛛网般的图纹,从而也就形成了这些有裂缝的土墩,这一过程与地球北极苔原上相似大小土墩的形成过程类似。这些特征被称为“冰核丘”(平戈斯),因纽特人词汇[11]。冰核丘含有纯水冰,因此,它们可能成为未来火星定居者的水源,许多看起来像地球上冰核丘的特征都可在乌托邦平原(北纬35-50°、东经80-115°)[12]找到。

古老河流和溪流

编辑

有大量证据表明水曾经在火星的河谷中流动过,来自轨道飞行器的图片显示了蜿蜒的河谷、叉谷,甚至还有逶迤弯曲的牛轭湖[13],下面的图片显示了其中的一些。

流线体

编辑

流线型形状代表了火星上以前水流的更多证据,水流将地貌塑造成了流线体。

新撞击坑

编辑

沙丘

编辑

火星上许多地方都有沙丘,沙丘被季节性二氧化碳霜冻覆盖,这种霜冻于初秋形成,一直持续到晚春。很多火星沙丘与陆地沙丘非常相似,但火星勘测轨道器高分辨率成像科学设备获得的图像表明,火星北极地区的沙丘会受到季节性二氧化碳升华引发的颗粒流的改变,这是地球上从未见过的过程。许多沙丘呈黑色,因为它们来源于黑色火山岩玄武岩。地外沙海,例如在火星上发现的沙海,被称为“undae”-来自拉丁语“波浪”。

着陆点

编辑

一些建议的目标成为2020年火星车任务的可能地点,目标地位于菲尔索夫霍顿撞击坑,这些地点是26处列选地点中的其中两处,用以寻找生命迹象并收集样本,并在以后带回地球[14][15][16]

景观特征

编辑

重现性坡线是温暖季节延伸在斜坡上一些细小的暗色条纹,它们可能是液态水的证据[18][19][20]。然而,有关是否是水或需要多少水仍存有争议[21] [22] [23]

岩层

编辑

火星上的许多地方都有重叠的岩层,岩石可以以多种方式形成岩层,火山、风或水可以形成地层[24],地下水的作用可以使地层变硬。

,

这组岩层都来自阿拉伯区的一座撞击坑中。

这组分层地形来自科普剌塔斯区中的卢罗斯谷(Louros)。

冰盖中的层状结构

编辑

冲沟

编辑

火星冲沟是在火星上发现的一系列狭窄冲刷沟壑以及相关的下坡沉积物,因与地球上的冲沟相似而得名,最早是在火星全球探勘者号拍摄的图像中所发现,它们常出现在陡坡上,特别是陨石坑的坑壁上。通常,每条冲沟沟头都有一处水系蓄水洼地,坡下则形成一片冲积扇,还有连接两条冲沟的细叉沟,使整个冲沟呈沙漏状[25]。人们认为这些冲沟相对年轻,因为上面几乎没有覆盖陨石坑。

根据它们的类型、外观、位置和地点以及与被认为是富含水冰地貌的明显相互作用,许多研究人员认为,凿刻冲沟的过程涉及液态水。然而,这仍然是一个有待进一步研究的课题。

,

标注出主要部位的冲沟图像。火星冲沟主要由凹坑、沟渠和冲积扇组成。由于这条冲沟上没有陨坑,被认为地质龄相当年轻。图像拍摄于法厄同区

火星大部分表面都有一层富含水冰的厚厚覆盖层,它们是由过去多次从天空飘落的冰芯尘埃所构成[26][27][28],在覆盖层中的部分区域可看到一系列的分层结构[29]


当雪和尘埃包裹的冰降落后,有充分的证据表明该覆盖层富含水冰。在许多表面常见的多边形表明土壤富含水冰;2001火星奥德赛号发现了高水平的(可能来自水)[30][31][32][33][34];轨道上测得的热量表明是冰[35][36]凤凰号(航天器)降落在一处多边形区,发现了水冰并进行了直接观测[37][38],事实上,它的着陆火箭曾暴露出了纯冰。理论预测在几厘米厚的土壤下就会发现水冰,该覆盖层被称为“纬度相关覆盖层”,因为它的存在与所处纬度有关。正是这层覆盖层的破裂,后来才形成了多边形地面,这种富冰地面的开裂是根据物理过程所预测的[39][40] [41][42][43][44][45]

多边形、有图案的地面,在火星一些地区非常常见[46][47][48][49][44][50][51],并被普遍认为这是由地面上冰的升华所导致。升华是固体冰直接变成气体,与地球上干冰的情况类似。火星上呈现多边形地面的地方可能表明未来定居者可在那里找到水冰。图案地面覆盖层是由在气候不同时从天空落下的冰核尘埃所构成,它们又被称为“纬度相关覆盖层” [26][27][52][53]

,

复杂多边形图案地面

编辑

裸露的冰盖

编辑

HiWish计划下高分辨率成像科学设备在拍摄的米兰科维奇撞击坑照片中发现了许多三角洼地,研究人员发现,在这些地方仅1-2米深的土壤下贮藏了大量的水冰。根据发表在《科学》杂志上的这项研究,这些洼地在面向北极的峭壁中含有水冰。火星上共发现八处有水冰的地方,其中米兰科维奇撞击坑是北半球唯一的一处,该项研究是通过火星勘测轨道飞行器上的仪器进行的[54][55][56][57][58]


以下图像是这次地下冰盖研究中所涉及的一处[59]

这些三角洼地类似于贝状地形中的洼地,但贝状地形一般显示为面向赤道的缓坡,并且呈圆形,而这里讨论的洼地陡坡却为面朝北极的峭壁,并且发现于南北纬55-59度之间[59],贝状地形在火星中纬度地区很常见,分别位于南北纬45°到60°之间。

扇形地形

编辑

扇形地形在火星南北45°到60°之间的中纬度地区很常见,在北半球的乌托邦平原[60][61]和南半球的佩纽斯和安菲特里忒火山口区尤为突出[62][63]。这种地形由带扇贝荷叶边状口沿、无凸起壁垒环的浅洼地构成,通常称为“扇形洼地”或简称“扇形地形”。扇形洼地可能呈单独或聚集出现,有时似乎串联在一起。一处典型的扇形洼地显示为面向赤道的缓坡和面朝极地的峭壁,这种不对称地形可能是由于日照差异造成的。扇形洼地据认为是地下物质(可能是间隙冰)因升华消失而形成,这一过程目前可能仍在发生[64]

2016年11月22日,美国宇航局报告称,在火星乌托邦平原地区发现了大量地下冰[65],据估计,检测到的水量相当于一座苏必利尔湖水量[66][67]。该地区的水冰容量是根据火星勘测轨道飞行器上的探地雷达仪,简称“沙拉德”(SHARAD)的测量结果确定的。根据从探地雷达获得的数据,测定的“电容率”或介电常数,介电常数值与大量聚集的水冰相一致[68][69][70]。2016年11月22日,美国宇航局报告称,在火星乌托邦平原地区发现了大量地下冰[65],检测到的水量相当于一座苏必利尔湖[66][67]。该地区的水冰容量是根据火星勘测轨道飞行器上的探地雷达仪,简称“沙拉德”(SHARAD)的测量结果确定的。根据从探地雷达获得的数据,测定的“电容率”或介电常数,介电常数值与大量聚集的水冰相一致[68][69][70]

,

底座形撞击坑

编辑

底座形撞击坑是一种喷出物在陨坑周围形成一座凸起平台(如基座)的撞击坑。当撞击坑喷出的物质形成一层耐侵蚀层后,它周围的区域受侵蚀速度会较其他区域更慢,由此就会形成一座基座。一些基座被精确测出高于周边区域数百米,意味着有数百米的材料被侵蚀掉了,结果使得陨石坑及其喷出物覆盖层都高耸于周边环境之上。底座形陨石坑是在水手号任务期间首次观测到的[71][72][73][74]

,

环模陨石坑被认为是由小行星撞击下面分布有冰层的地面所形成,撞击使冰层反弹,形成“环形模具”形状。

晕坑

编辑

尘暴痕迹可能非常美,起因可能是巨大尘暴吹去了火星表面鲜艳的尘埃,从而暴露出一些暗黑层所形成。火星上的尘暴已被从地面和轨道高空拍摄到,它们甚至还吹走了火星上两辆火星车太阳能电池板上的灰尘,从而大大延长了它们的使用寿命[76]。研究表明,尘暴痕迹模式每隔数月就会发生变化[77],一项结合了高分辨率立体相机(HRSC)和火星轨道器相机(MOC)数据的研究发现,火星上一些大型尘暴的直径为700米(2300英尺),持续时间至少有26分钟[78]

雅丹地貌

编辑

雅丹地貌在火星上一些地区很常见,特别是在所谓的“梅杜莎槽沟层”中,这种地层被发现于亚马逊区和赤道附近[79]。它们是由风刮起的沙粒大小的颗粒作用形成,因此,雅丹地貌通常指示出形成时的风向[80]。由于雅丹地貌中很少出现撞击坑,因此被认为相对年轻[81]

,

羽流和蜘蛛状结构

编辑

火星上某些时候,会发生黑色气体和尘埃喷发,风经常把它们吹成扇形或尾巴状。在冬季,大量积聚的霜冻,被直接冻结在由覆盖着数层尘埃和沙粒的水冰所构成的永久性极地冰盖表面。沉积物启始于一层布满尘埃的二氧化碳霜冻,在整个冬季,它们会重新结晶并变得更为致密。霜冻中的尘埃和沙粒慢慢下沉。到春季气温上升时,霜冻层已变成了一层约3英尺厚的半透明冰,覆盖在深色沙尘基底上。这层黑色的沙尘会吸收阳光,使水冰升华(直接气化),最后,大量气体积聚,压力逐惭升高。当发现一处薄弱点时,气体就会逸出并吹出尘埃,流速可达每小时100英里[82]。计算表明,喷出的羽流高达20-80米[83][84]有时也可在地表看到被称为“蜘蛛”的黑色通道[85][86][87],当这一过程发生时,表面似乎布满了黑点[82][88]

现已提出许多想法来解释这些特征[89][90][91][92][93][94],这些特征可在下面的一些图片中看到。

在火星中纬度地区发现了一种被称为“上部平原单元”的50-100米厚覆盖层残余物,在研究都特罗尼勒斯桌山群伊斯墨诺斯湖区)区时被首次发现,但其他地方也有出现。该类残余物由陨石坑中和沿桌山的一组倾斜层构成[95]。倾斜层的大小和形状可能各不相同,有些看起来像中美洲阿兹特克金字塔。

这种单元也会退化为脑纹地形,脑纹地形是一种3-5米高的迷宫状垄脊区。有些垄脊可能由冰核构成,因此它们可能是未来定居者的水源.

上部平原单元的一些区域显示出大型裂缝和带凸起边缘的凹槽,这些地区被称为棱状上部平原(Ribbed Upper Plains)。据信断裂起始于应力引起的小裂缝,因为当碎屑堆聚集在一起或碎屑堆靠近边缘时,此类地点就会产生挤压应力,这在棱状上层平原很常见,应力则会引发断裂过程。裂缝暴露了更多的地表,因此地层中更多的冰升华到行星稀薄的大气层中。最终,小裂缝变成为大峡谷或大槽沟。

小裂缝通常包含小洞坑和洞坑链,这些被认为是由地表上的冰升华所形成[96][97]。火星表面大部分区域都蕴含了水冰,冰被一层1米厚的尘埃和其他物质所保护。然而,一旦出现地表缝,将会使水冰暴露在稀薄的大气层中,在很短时间内,冰将消失在寒冷稀薄的大气中[98][99],这一过程称为升华干冰在地球上也有类似的行为。当凤凰号火星探测器发现裸露的冰块在几天内消失时,在火星上观察到了升华现象 [37][100]。此外,高分辨率成像科学设备还发现了底部有冰的新陨石坑。隔了一段时间,它曾看到的积冰就已消失无踪了[101]

据认为,上层平原单元来自于天空中降落的物质,它覆盖在各种表面上,好像它均匀落下。与其他堆积覆盖层一样,上层平原单元具有层状、细粒度和富含冰,它分布普遍,似乎没有来源点。火星某些区域的表面外观是由于该单元的退化形成的,它也是造成舌状岩屑坡表面外观的主要原因[97]。据信,上部平原覆盖层单元和其他覆盖层单元的分层,是由该行星气候发生的重大变化所致。模型预测,随着地质时间推移,火星自转轴倾角或倾斜度可能会从目前的25度改变到超过80度。高倾斜期间将导致火星极地冰盖中的冰重新分布,并改变大气层中的灰尘含量[102][103][104]

线性脊状网

编辑

在火星陨石坑内及周围不同地方都可以发现线性脊状网[105],这些脊线通常以格子形相交的直线形式出现,有数百米长,几十米高和数米宽。据认为,陨石撞击在地表形成了裂缝,这些裂缝后来充当了流体通道,流体使结构物胶结 。随着时间的推移,周围地层被侵蚀掉,留下这些坚硬的垄脊。

由于垄脊出现在有粘土的地方,这些地层可作为粘土的标志,而粘土的形成需要水,这里的水可以维持生命[106][107][108]

破碎地面

编辑

火星部分地区已破裂成桌山和山谷地形,其中一些可能相当壮观。

桌山

编辑

地面塌陷形成的桌山

编辑

冰下火山

编辑

有证据表明,火山有时会在冰下喷发,就像地球上的一样。当火山喷发时,大量积冰融化为水逸出,随后使表面发生开裂并崩塌,呈现同心裂缝和好似被撑开的大块地面[109]。像这类地点最近可能曾存在过液态水,因此是很可能会寻找到生命证据的地方[110][111]

断裂块体

编辑

在一些地方,大型裂缝会使表层破裂,有时裂缝会形成直边和大立方体巨岩。

熔岩流

编辑

无根火山锥

编辑

所谓的“无根火山锥”产生于下方有地面冰的熔岩流爆炸[112][113]。冰被熔岩流融化变成蒸汽,在爆炸中膨胀,形成圆锥体或圆环。在冰岛也发现了熔岩覆盖在被水浸透的基底上而产生的类似特征[114][112][115]

泥火山

编辑

有些看起来像火山的特征中,有一些可能是泥火山,受压的泥浆被迫向上拱起形成锥体。这些特征可能是寻找生命的地方,因为它们将可能的生命带到地表,并保护了它们免遭辐射的破坏。

希腊平原地表特征

编辑

在希腊平原的部分地面上发现了一些奇怪的地形,科学家们尚无法确定它们是如何形成的。

被掘出的陨坑

编辑

被掘出陨坑似乎是被重新揭露出来的[116],据信,它们形成后被掩埋,而现在正随着地层的侵蚀,被重新挖掘出来。陨石坑形成时,会摧毁它下面的结构。在下面的示例中,只能看到陨坑的一部分。如果陨石坑形成于分层特征后,它将会撞毁掉下方的部分特征,我们将能看到整个陨石坑。

如何建议要拍摄的图像

编辑

要推荐高分辨率成像科学设备拍摄图像的位置,请访问以下站点:http://www.uahirise.org/hiwish页面存档备份,存于互联网档案馆

在注册时,需要您提供身份识别号(ID)和密码。当你选择要成像的目标时,必须先在地图上选择一处准确的位置,并写下为何要拍摄该图像。如果你的建议被接受,可能需要3个月或更长时间才能看到你要的照片。您将会收到一封有关您建议图像的电子邮件。电子邮件通常在每月的第一个星期三下午稍晚时到达。

另请参阅

编辑

参考文献

编辑
  1. ^ Public Invited To Pick Pixels On Mars. Mars Daily. January 22, 2010 [January 10, 2011]. (原始内容存档于2013-05-23). 
  2. ^ 存档副本. [2021-08-05]. (原始内容存档于2021-08-05). 
  3. ^ 存档副本. [2021-08-05]. (原始内容存档于2019-09-08). 
  4. ^ Interview with Alfred McEwen on Planetary Radio, 3/15/2010
  5. ^ Your Personal Photoshoot on Mars?. www.planetary.org. [20 November 2018]. (原始内容存档于2019-08-31). 
  6. ^ NASA releases first eight "HiWish" selections of people's choice Mars images. TopNews. April 2, 2010 [January 10, 2011]. (原始内容存档于May 23, 2013). 
  7. ^ McEwen, A. et al. 2016. THE FIRST DECADE OF HIRISE AT MARS. 47th Lunar and Planetary Science Conference (2016) 1372.pdf
  8. ^ Milliken, R.; Mustard, J.; Goldsby, D. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. 2003, 108. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002JE002005. 
  9. ^ Arfstrom, J; Hartmann, W. Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships. Icarus. 2005, 174: 321–335. Bibcode:2005Icar..174..321A. doi:10.1016/j.icarus.2004.05.026. 
  10. ^ Hubbard, B.; Milliken, R.; Kargel, J.; Limaye, A.; Souness, C. Geomorphological characterisation and interpretation of a mid-latitude glacier-like form: Hellas Planitia, Mars. Icarus. 2011, 211: 330–346. Bibcode:2011Icar..211..330H. doi:10.1016/j.icarus.2010.10.021. 
  11. ^ HiRISE - Spider Webs (ESP_046359_1250). www.uahirise.org. [20 November 2018]. (原始内容存档于2016-10-27). 
  12. ^ Soare, E., et al. 2019. Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.03.010
  13. ^ Baker, V. 1982. The Channels of Mars. Univ. of Tex. Press, Austin, TX
  14. ^ NASA.gov. [2021-08-05]. (原始内容存档于2013-02-14). 
  15. ^ HiRISE - Candidate Landing Site for 2020 Mission in Firsoff Crater (ESP_039404_1820). hirise.lpl.arizona.edu. [20 November 2018]. (原始内容存档于2022-03-19). 
  16. ^ Pondrelli, M., A. Rossi, L. Deit, S. van Gasselt, F. Fueten, E. Hauber, B. Cavalazzi, M. Glamoclija, and F. Franchi. 2014. A PROPOSED LANDING SITE FOR THE 2020 MARS MISSION: FIRSOFF CRATER. http://marsnext.jpl.nasa.gov/workshops/2014_05/33_Pondrelli_Firsoff_LS2020.pdf页面存档备份,存于互联网档案馆
  17. ^ Golombek, J. et al. 2016. Downselection of landing Sites for the Mars 2020 Rover Mission. 47th Lunar and Planetary Science Conference (2016). 2324.pdf
  18. ^ McEwen, A.; et al. Recurring slope lineae in equatorial regions of Mars. Nature Geoscience. 2014, 7: 53–58. doi:10.1038/ngeo2014. 
  19. ^ McEwen, A.; et al. Seasonal Flows on Warm Martian Slopes. Science. 2011, 333 (6043): 740–743. Bibcode:2011Sci...333..740M. PMID 21817049. doi:10.1126/science.1204816. 
  20. ^ recurring slope lineae - Red Planet Report. redplanet.asu.edu. [20 November 2018]. (原始内容存档于2017-09-04). 
  21. ^ 存档副本. [2021-08-05]. (原始内容存档于2021-02-05). 
  22. ^ Bishop, J., et al. 2021. Martian subsurface cryosalt expansion and collapse as trigger for landslides. Science Advances. Vol. 7, no. 6, eabe4459 DOI: 10.1126/sciadv.abe4459
  23. ^ 存档副本. [2021-08-05]. (原始内容存档于2021-12-27). 
  24. ^ HiRISE | High Resolution Imaging Science Experiment. Hirise.lpl.arizona.edu?psp_008437_1750. [2012-08-04]. (原始内容存档于2017-08-08). 
  25. ^ Malin, M.; Edgett, K. Evidence for recent groundwater seepage and surface runoff on Mars. Science. 2000, 288: 2330–2335. Bibcode:2000Sci...288.2330M. PMID 10875910. doi:10.1126/science.288.5475.2330. 
  26. ^ 26.0 26.1 Hecht, M. Metastability of water on Mars. Icarus. 2002, 156: 373–386. Bibcode:2002Icar..156..373H. doi:10.1006/icar.2001.6794. 
  27. ^ 27.0 27.1 Mustard, J.; et al. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature. 2001, 412 (6845): 411–414. Bibcode:2001Natur.412..411M. PMID 11473309. doi:10.1038/35086515. 
  28. ^ Pollack, J.; Colburn, D.; Flaser, F.; Kahn, R.; Carson, C.; Pidek, D. Properties and effects of dust suspended in the martian atmosphere. J. Geophys. Res. 1979, 84: 2929–2945. Bibcode:1979JGR....84.2929P. doi:10.1029/jb084ib06p02929. 
  29. ^ HiRISE - Layered Mantling Deposits in the Northern Mid-Latitudes (ESP_048897_2125). www.uahirise.org. [20 November 2018]. (原始内容存档于2017-09-02). 
  30. ^ Boynton, W.; et al. Distribution of hydrogen in the nearsurface of Mars: Evidence for sub-surface ice deposits. Science. 2002, 297: 81–85. Bibcode:2002Sci...297...81B. PMID 12040090. doi:10.1126/science.1073722. 
  31. ^ Kuzmin, R; et al. Regions of potential existence of free water (ice) in the near-surface martian ground: Results from the Mars Odyssey High-Energy Neutron Detector (HEND). Solar System Research. 2004, 38 (1): 1–11. doi:10.1023/b:sols.0000015150.61420.5b. 
  32. ^ Mitrofanov, I. et al. 2007a. Burial depth of water ice in Mars permafrost subsurface. In: LPSC 38, Abstract #3108. Houston, TX.
  33. ^ Mitrofanov, I.; et al. Water ice permafrost on Mars: Layering structure and subsurface distribution according to HEND/Odyssey and MOLA/MGS data. Geophys. Res. Lett. 2007b, 34: 18. doi:10.1029/2007GL030030. 
  34. ^ Mangold, N.; et al. Spatial relationships between patterned ground and ground ice detected by the neutron spectrometer on Mars. J. Geophys. Res. 2004, 109: E8. doi:10.1029/2004JE002235. 
  35. ^ Feldman, W.; et al. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science. 2002, 297: 75–78. Bibcode:2002Sci...297...75F. PMID 12040088. doi:10.1126/science.1073541. 
  36. ^ Feldman, W.; et al. North to south asymmetries in the water-equivalent hydrogen distribution at high latitudes on Mars. J. Geophys. Res. 2008, 113. doi:10.1029/2007JE003020. 
  37. ^ 37.0 37.1 Bright Chunks at Phoenix Lander's Mars Site Must Have Been Ice页面存档备份,存于互联网档案馆) – Official NASA press release (19.06.2008)
  38. ^ Confirmation of Water on Mars. Nasa.gov. 2008-06-20 [2012-07-13]. (原始内容存档于2008-07-01). 
  39. ^ Mutch, T.A., and 24 colleagues, 1976. The surface of Mars: The view from the Viking2 lander Science 194 (4271), 1277–1283.
  40. ^ Mutch, T.; et al. The geology of the Viking Lander 2 site. J. Geophys. Res. 1977, 82: 4452–4467. Bibcode:1977JGR....82.4452M. doi:10.1029/js082i028p04452. 
  41. ^ Levy, J.; et al. Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations. J. Geophys. Res. 2009, 114. Bibcode:2009JGRE..114.1007L. doi:10.1029/2008JE003273. 
  42. ^ Washburn, A. 1973. Periglacial Processes and Environments. St. Martin's Press, New York, pp. 1–2, 100–147.
  43. ^ Mellon, M. 1997. Small-scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost J. Geophys. Res. 102, 25,617-25,628.
  44. ^ 44.0 44.1 Mangold, N. High latitude patterned grounds on Mars: Classification, distribution and climatic control. Icarus. 2005, 174: 336–359. Bibcode:2005Icar..174..336M. doi:10.1016/j.icarus.2004.07.030. 
  45. ^ Marchant, D.; Head, J. Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus. 2007, 192: 187–222. Bibcode:2007Icar..192..187M. doi:10.1016/j.icarus.2007.06.018. 
  46. ^ Refubium - Suche (PDF). www.diss.fu-berlin.de. [20 November 2018]. (原始内容 (PDF)存档于2017-08-14). 
  47. ^ Kostama, V.-P.; Kreslavsky, Head. Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement. Geophys. Res. Lett. 2006, 33: L11201. doi:10.1029/2006GL025946.K. 
  48. ^ Malin, M.; Edgett, K. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 2001, 106 (E10): 23429–23540. Bibcode:2001JGR...10623429M. doi:10.1029/2000je001455. 
  49. ^ Milliken, R.; et al. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. 2003, 108: E6. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002JE002005. 
  50. ^ Kreslavsky, M.; Head, J. Kilometer-scale roughness on Mars: Results from MOLA data analysis. J. Geophys. Res. 2000, 105 (E11): 26695–26712. Bibcode:2000JGR...10526695K. doi:10.1029/2000je001259. 
  51. ^ Seibert, N.; Kargel, J. Small-scale martian polygonal terrain: Implications for liquid surface water. Geophys. Res. Lett. 2001, 28 (5): 899–902. Bibcode:2001GeoRL..28..899S. doi:10.1029/2000gl012093. 
  52. ^ Kreslavsky, M.A., Head, J.W., 2002. High-latitude Recent Surface Mantle on Mars: New Results from MOLA and MOC. European Geophysical Society XXVII, Nice.
  53. ^ Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; Marchant, D.R. Recent ice ages on Mars. Nature. 2003, 426 (6968): 797–802. Bibcode:2003Natur.426..797H. PMID 14685228. doi:10.1038/nature02114. 
  54. ^ Steep Slopes on Mars Reveal Structure of Buried Ice页面存档备份,存于互联网档案馆). NASA Press Release. 11 January 2018.
  55. ^ Ice cliffs spotted on Mars页面存档备份,存于互联网档案馆). Science News. Paul Voosen. 11 January 2018.
  56. ^ Exposed subsurface ice sheets in the Martian mid-latitudes. www.slideshare.net. [20 November 2018]. (原始内容存档于2021-08-05). 
  57. ^ Steep Slopes on Mars Reveal Structure of Buried Ice - SpaceRef. spaceref.com. [20 November 2018]. [失效链接]
  58. ^ Dundas, Colin M.; et al. Exposed subsurface ice sheets in the Martian mid-latitudes. Science. 2018, 359 (6372): 199–201. Bibcode:2018Sci...359..199D. PMID 29326269. doi:10.1126/science.aao1619. 
  59. ^ 59.0 59.1 Supplementary Materials Exposed subsurface ice sheets in the Martian mid-latitudes Colin M. Dundas, Ali M. Bramson, Lujendra Ojha, James J. Wray, Michael T. Mellon, Shane Byrne, Alfred S. McEwen, Nathaniel E. Putzig, Donna Viola, Sarah Sutton, Erin Clark, John W. Holt
  60. ^ Lefort, A.; Russell, P. S.; Thomas, N.; McEwen, A. S.; Dundas, C. M.; Kirk, R. L. Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research. 2009, 114 (E4): E04005. Bibcode:2009JGRE..114.4005L. doi:10.1029/2008JE003264. 
  61. ^ Morgenstern, A; Hauber, E; Reiss, D; van Gasselt, S; Grosse, G; Schirrmeister, L. Deposition and degradation of a volatile-rich layer in Utopia Planitia, and implications for climate history on Mars (PDF). Journal of Geophysical Research: Planets. 2007, 112 (E6): E06010. Bibcode:2007JGRE..112.6010M. doi:10.1029/2006JE002869. (原始内容 (PDF)存档于2011-10-04). 
  62. ^ Lefort, A.; Russell, P.S.; Thomas, N. Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus. 2010, 205 (1): 259. Bibcode:2010Icar..205..259L. doi:10.1016/j.icarus.2009.06.005. 
  63. ^ Zanetti, M.; Hiesinger, H.; Reiss, D.; Hauber, E.; Neukum, G. Scalloped Depression Development on Malea Planum and the Southern Wall of the Hellas Basin, Mars (PDF). Lunar and Planetary Science. 2009, 40. p. 2178, abstract 2178 [2021-08-05]. Bibcode:2009LPI....40.2178Z. (原始内容 (PDF)存档于2016-06-16). 
  64. ^ http://hiroc.lpl.arizona.edu/images/PSP?diafotizo.php?ID=PSP_002296_1215[永久失效链接]
  65. ^ Huge Underground Ice Deposit on Mars Is Bigger Than New Mexico. [20 November 2018]. (原始内容存档于2018-01-12). 
  66. ^ Staff. Scalloped Terrain Led to Finding of Buried Ice on Mars. NASA. November 22, 2016 [November 23, 2016]. (原始内容存档于2018-12-26). 
  67. ^ Lake of frozen water the size of New Mexico found on Mars – NASA. The Register. November 22, 2016 [November 23, 2016]. (原始内容存档于2018-12-26). 
  68. ^ Bramson, A, et al. 2015. Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters: 42, 6566-6574
  69. ^ Archived copy. [2016-11-29]. (原始内容存档于2016-11-30). 
  70. ^ Stuurman, C., et al. 2016. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters: 43, 9484_9491.
  71. ^ http://hirise.lpl.eduPSP_008508_1870[永久失效链接]
  72. ^ Bleacher, J. and S. Sakimoto. Pedestal Craters, A Tool For Interpreting Geological Histories and Estimating Erosion Rates. LPSC
  73. ^ Archived copy. [2010-03-26]. (原始内容存档于2010-01-18). 
  74. ^ McCauley, J. F. Mariner 9 evidence for wind erosion in the equatorial and mid-latitude regions of Mars. Journal of Geophysical Research. 1973, 78 (20): 4123–4137. Bibcode:1973JGR....78.4123M. doi:10.1029/JB078i020p04123. 
  75. ^ Levy, J. et al. 2008. Origin and arrangement of boulders on the martian northern plains: Assessment of emplacement and modification environments> In 39th Lunar and Planetary Science Conference, Abstract #1172. League City, TX
  76. ^ Mars Exploration Rover Mission: Press Release Images: Spirit (页面存档备份,存于互联网档案馆). Marsrovers.jpl.nasa.gov. Retrieved on 7 August 2011.
  77. ^ HiRISE - Dust Devils Dancing on Dunes (PSP_005383_1255). hirise.lpl.arizona.edu. [20 November 2018]. (原始内容存档于2018-01-09). 
  78. ^ Reiss, D.; et al. Multitemporal observations of identical active dust devils on Mars with High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus. 2011, 215: 358–369. Bibcode:2011Icar..215..358R. doi:10.1016/j.icarus.2011.06.011. 
  79. ^ Ward, A. Wesley. Yardangs on Mars: Evidence of recent wind erosion. Journal of Geophysical Research. 20 November 1979, 84 (B14): 8147. Bibcode:1979JGR....84.8147W. doi:10.1029/JB084iB14p08147. 
  80. ^ esa. 'Yardangs' on Mars. [20 November 2018]. (原始内容存档于2019-09-06). 
  81. ^ Medusae Fossae Formation - Mars Odyssey Mission THEMIS. themis.asu.edu. [20 November 2018]. (原始内容存档于2017-08-29). 
  82. ^ 82.0 82.1 Gas jets spawn dark 'spiders' and spots on Mars icecap - Mars Odyssey Mission THEMIS. themis.asu.edu. [20 November 2018]. (原始内容存档于2017-08-09). 
  83. ^ Thomas, N., G. Portyankina, C.J. Hansen, A. Pommerol. 2011. HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: IV. Fluid dynamics models of CO2 jets Icarus: 212, pp. 66–85
  84. ^ Buhler, Peter, Andrew Ingersoll, Bethany Ehlmann, Cale Fassett, James Head. 2017. How the martian residual south polar cap develops quasi-circular and heart-shaped pits, troughs, and moats. Icarus: 286, 69–93
  85. ^ Benson, M. 2012. Planetfall: New Solar System Visions
  86. ^ Spiders invade Mars. Astrobiology Magazine. 17 August 2006 [20 November 2018]. (原始内容存档于2016-08-23). 
  87. ^ Kieffer H, Christensen P, Titus T. 2006 Aug 17. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap. Nature: 442(7104):793-6.
  88. ^ Thawing 'Dry Ice' Drives Groovy Action on Mars. NASA/JPL. [20 November 2018]. (原始内容存档于2016-12-29). 
  89. ^ Kieffer, H. H. Mars Polar Science 2000 - Annual Punctuated CO2 Slab-ice and Jets on Mars. (PDF). 2000 [6 September 2009]. (原始内容 (PDF)存档于2011-08-21). 
  90. ^ Kieffer, Hugh H. Third Mars Polar Science Conference (2003)- Behavior of Solid CO (PDF). 2003 [6 September 2009]. (原始内容 (PDF)存档于2021-02-25). 
  91. ^ Portyankina, G. (编). Fourth Mars Polar Science Conference - Simulations of Geyser-Type Eruptions in Cryptic Region of Martian South (PDF). 2006 [11 August 2009]. (原始内容 (PDF)存档于2012-02-17). 
  92. ^ Sz. Bérczi; et al (编). Lunar and Planetary Science XXXV (2004) - Stratigraphy of Special Layers – Transient Ones on Permeable Ones: Examples (PDF). 2004 [12 August 2009]. (原始内容 (PDF)存档于2017-07-06). 
  93. ^ NASA Findings Suggest Jets Bursting From Martian Ice Cap. Jet Propulsion Laboratory (NASA). 16 August 2006 [11 August 2009]. (原始内容存档于2009-10-10). 
  94. ^ C.J. Hansen; N. Thomas; G. Portyankina; et al. HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: I. Erosion of the surface (PDF). Icarus. 2010, 205 (1): 283–295 [26 July 2010]. Bibcode:2010Icar..205..283H. doi:10.1016/j.icarus.2009.07.021. (原始内容 (PDF)存档于2016-03-03). 
  95. ^ Carr, M. 2001.
  96. ^ Morgenstern, A., et al. 2007
  97. ^ 97.0 97.1 Baker, D.; Head, J. Extensive Middle Amazonian mantling of debris aprons and plains in Deuteronilus Mensae, Mars: Implication for the record of mid-latitude glaciation. Icarus. 2015, 260: 269–288. doi:10.1016/j.icarus.2015.06.036. 
  98. ^ Mangold, N. Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures. J. Geophys. Res. 2003, 108: 8021. Bibcode:2003JGRE..108.8021M. doi:10.1029/2002je001885. 
  99. ^ Levy, J. et al. 2009. Concentric
  100. ^ NASA - Bright Chunks at Phoenix Lander's Mars Site Must Have Been Ice. www.nasa.gov. [20 November 2018]. (原始内容存档于2016-03-04). 
  101. ^ Byrne, S.; et al. Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters. Science. 2009, 325: 1674–1676. Bibcode:2009Sci...325.1674B. PMID 19779195. doi:10.1126/science.1175307. 
  102. ^ Head, J. et al. 2003.
  103. ^ Madeleine, et al. 2014.
  104. ^ Schon; et al. A recent ice age on Mars: Evidence for climate oscillations from regional layering in mid-latitude mantling deposits. Geophys. Res. Lett. 2009, 36: L15202. 
  105. ^ Head, J.; Mustard, J. Breccia dikes and crater-related faults in impact craters on Mars: Erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary. Meteorit. Planet Science. 2006, 41: 1675–1690. doi:10.1111/j.1945-5100.2006.tb00444.x. 
  106. ^ Mangold; et al. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J. Geophys. Res. 2007, 112. Bibcode:2007JGRE..112.8S04M. doi:10.1029/2006JE002835. 
  107. ^ Mustard; et al. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res. 2007. doi:10.1029/2006JE002834. 
  108. ^ Mustard; et al. Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis Basin. J. Geophys. Res. 2009, 114. Bibcode:2009JGRE..114.0D12M. doi:10.1029/2009JE003349. 
  109. ^ Smellie, J., B. Edwards. 2016. Glaciovolcanism on Earth and Mars. Cambridge University Press.
  110. ^ 110.0 110.1 Levy, J., et al. 2017. Candidate volcanic and impact-induced ice depressions on Mars. Icarus: 285, 185-194.
  111. ^ University of Texas at Austin. "A funnel on Mars could be a place to look for life." ScienceDaily. ScienceDaily, 10 November 2016. <www.sciencedaily.com/releases/2016/11/161110125408.htm>.
  112. ^ 112.0 112.1 PSR Discoveries: Rootless cones on Mars. www.psrd.hawaii.edu. [20 November 2018]. (原始内容存档于2016-08-09). 
  113. ^ Lanagan, P., A. McEwen, L. Keszthelyi, and T. Thordarson. 2001. Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times, Geophysical Research Letters: 28, 2365-2368.
  114. ^ S. Fagents1, a., P. Lanagan, R. Greeley. 2002. Rootless cones on Mars: a consequence of lava-ground ice interaction. Geological Society, Londo. Special Publications: 202, 295-317.
  115. ^ Jaeger, W., L. Keszthelyi, A. McEwen, C. Dundas, P. Russell, and the HiRISE team. 2007. EARLY HiRISE OBSERVATIONS OF RING/MOUND LANDFORMS IN ATHABASCA VALLES, MARS. Lunar and Planetary Science XXXVIII 1955.pdf.
  116. ^ https://archive.org/details/PLAN-PIA06808

延伸阅读

编辑
  • Lorenz, R. 2014. The Dune Whisperers. The Planetary Report: 34, 1, 8-14
  • Lorenz, R., J. Zimbelman. 2014. Dune Worlds: How Windblown Sand Shapes Planetary Landscapes. Springer Praxis Books / Geophysical Sciences.
  • Grotzinger, J. and R. Milliken (eds.). 2012. Sedimentary Geology of Mars. SEPM.

外部链接

编辑