法拉第吊诡,或法拉第悖论Faraday paradox)是一个关于法拉第感应定律的物理实验。1831年,物理学家麦可·法拉第推断出法拉第感应定律(简称“法拉第定律”),但是,在应用这定律来解释法拉第吊诡的过程中,他遇到了很多困难。这在本文会有详细相关叙述。

麦可·法拉第

实验组态

编辑
 
图1,法拉第的圆盘形发电机。圆盘形导体(浅蓝色)以角速率   旋转于由一块圆柱形永久磁铁(未绘出)产生的磁场   (以棕褐色箭矢表示)。劳仑兹力的磁部分   趋动径向电流,从圆盘中心,流过圆盘,抵达边缘(天蓝色),然后通过底端金属刷(五角形)、支撑架(深蓝色)、转轴,返回圆盘中心,形成完整回路。只要转动圆盘,就可以从机械运动产生电流(金黄色)。

如右图所示,法拉第吊诡实验只需要一些简单器件:圆柱形永久磁铁、圆盘形导体、金属刷、转轴导体、支撑架导体,检流计。圆柱形永久磁铁与圆盘形导体分别安装于各自的转轴,可以各自自由旋转。将安装于支撑架一端的金属刷与圆盘边缘相接触,又将与圆盘相连接的转轴安装于支撑架另一端,就可以形成完整闭合电路。在这闭合电路中,串联一个检流计来测量电流

实验程序

编辑

这实验的进行有三个步骤:

  1. 假设磁铁为固定不动,不能旋转,只让圆盘旋转,则检流计会测量到直流。这实验设备的功能类似发电机,因此称为“法拉第发电机”、法拉第圆盘、或单极发电机英语homopolar generator
  2. 假设圆盘为固定不动,不能旋转,只让磁铁旋转,则检流计不会测量到直流
  3. 假设让圆盘与磁铁以同角速度旋转,则检流计会测量到直流,如同第一步骤得到的结果。

为什么吊诡?

编辑

有些物理学者称这实验为吊诡,因为,猛然一看,这实验似乎违背了法拉第定律,不论是甚么部分在旋转,穿过圆盘的磁通量好像都一样,所以,从磁通量观点来看,对于这三个案例,电动势都应该预测为零。这观点错误地选择了用来计算磁通量的曲面,对于这论点,稍后会有更详细解释。

 
透过铁粉显示出的磁场线。将条状磁铁放在白纸下面,铺洒一堆铁粉在白纸上面,这些铁粉会依著磁场线的方向排列,形成一条条的曲线,在曲线的每一点显示出磁场线的方向。

磁场线观点来看,这吊诡又有不同的理论结果。在法拉第的电磁感应模型里,磁场是由想像的磁场线组成。若将条状磁铁放在白纸下面,铺洒一堆铁粉在白纸上面,这些铁粉会依著磁场线的方向排列,形成一条条的曲线,在曲线的每一点显示出磁场线的方向。假若电动势与磁场线被电路切割的速率呈正比,则从磁铁的参考系观测,磁场线为固定不动。所以,相对于磁铁,将圆盘旋转,或相对于圆盘,将磁铁旋转,这两种动作应该都会生成电动势,但是若将磁铁与圆盘一同旋转,则电动势为零。

法拉第的解释

编辑

在法拉第的“电磁感应模型”里,当闭合电路切割过磁场线时,会有感应电流生成于这闭合电路。按照这模型,当圆盘旋转或磁铁旋转时,应该会有感应电流流动于法拉第圆盘,而当磁铁与圆盘一同旋转时,应该不会出现感应电流。然而,这结果与实验结果迥然不同。法拉第试图解释这差异,他假定当磁铁旋转时,磁铁的整个磁场于其伴随的磁场线固定不动(注意到这是一个完全正确的绘景,虽然也许不太容易从电磁感应模型推理出来)。换句话说,磁场线的参考系与磁铁的参考系不同。在下一个段落,会有详细论述,现代物理学(自从发现电子之后)不需要电磁感应模型,就能够完全解释这吊诡。

现代解释

编辑

电子与劳仑兹力

编辑

自从约瑟夫·汤姆森于1897年发现电子之后,物理学者获得了微观解析这吊诡的能力。注意到移动于磁场   的电子会感受到劳仑兹力   ;其中,  是电子所带电荷量  是电子移动速度。如图1所示,呈旋转运动中的圆盘导体,其内部自由电子会感受到劳仑兹力。这劳仑兹力垂直于电子的速度   ,也垂直于磁场   ,而磁场   又垂直于圆盘。所以,按照右手定则,这劳仑兹力的方向(对于电子)是反径向,即朝著转轴的方向;对于正价粒子,劳仑兹力的方向是径向,即朝著圆盘边缘的方向。

当然,这径向力会生成动生电动势,造成电流流动于整个电路,因为它造成了电子的反径向移动。这电子的反径向运动又会生成另一股劳仑兹力,反抗随著圆盘旋转的电子圆周运动,这趋向于使圆盘旋转变慢。因此,只有倚赖不断地施加外力,圆盘才能持续旋转。由于圆盘持续旋转,电流也持续地流动于整个电路。这机制与实验观测相符合:每当圆盘旋转,就会生成电流,不论磁场的属性为何。

应用劳仑兹力定律可以解释法拉第吊诡,但这也在学术界引起极大的争论──到底磁场是否随著磁铁旋转?按照劳仑兹力定律,磁场与导体之间的相对运动,直接地与作用于电荷的劳仑兹力有关,物理学者猜测,对于磁铁与圆盘共同旋转而电动势不为零的案例,磁场应该不会与磁铁共同旋转,否则,磁场就无法与圆盘呈相对运动。

数学分析

编辑

对于从金属刷,经过支撑架与转轴,到圆盘中心这一段路径,由于磁场与这路径的包含平面之间互相平行,而不是互相正交,不论是甚么器件在旋转,路径积分获得的电动势永远为零。因此,只需要专注于从圆盘中心到金属刷这一段路径。

法拉第定律表明,[1]

任何闭合电路中感应电动势的大小,等于穿过这电路的磁通量的变化率。

以方程式表示,

 

其中,  是电动势,  是磁通量,  是磁场,  是以闭合电路为边缘的任意积分曲面,  是微小面元素。

 
图2,用来计算电动势的两条可行回路。在圆盘区域,金色的几何简单回路比较容易使用,但另外一条黄色回路会给出同样结果。在选择这两条回路时,并不存在想要模仿任何实际电流路径的意图。

怎样才能应用这定律于法拉第圆盘发电机?一种方法是定义“磁通切割率”,首先绘一条假想线于圆盘,从金属刷到转动轴,然后,计算这条假想线切割过多少磁通量每单位时间。如图2所示,假定圆盘半径为   ,则其圆心角为   的扇形部分的面积  

 

这假想线的磁通切割率为

 

其中,  为圆盘旋转的角速率。

将法拉第定律内的磁通量变化率更改为磁通切割率,其它内容不变。根据这更改的法拉第定律,电动势为

 

注意到在思考电动势(或电流)的方向时,需要基于冷次定律,运动所生成的电动势必会抗拒由于运动而产生的磁通量。例如,在图2中的金色回路,其处于圆盘的径向线段(假想线),所切割过的扇面,假设这扇面向量与磁场相向,则磁通量为正值,并且随著时间演进而增加。根据冷次定律,感应的电动势(因此电流)趋向于削减磁通量。按照右手定则,假想线内的电动势(或电流)的方向为径向。

这从计算切割磁通量所得到的电动势结果,可以与从假想线移动于磁场所感应出的动生电动势相比较:

 

其中,  是劳仑兹力。

两个答案相同。处于假想线的正电荷,所感受到的劳仑兹力的方向为  的方向,即径向。

对于这计算电路所切割的磁通量的方法,若要严格地以法拉第定律做形式化处理,必需正确地计算被闭合电路围入的曲面   。当然,假若积分的区域与时间有关,则取这积分的时间微分并不能简单地只取其被积函数的时间微分,这一点时常会被忽略。详细计算方法,请参阅莱布尼茨积分定则Leibniz integral rule)与劳仑兹力定律

在选择曲面   时,有两个限制:

  1. 这曲面必需被闭合回路围入,而这闭合回路是想要计算电动势之处。
  2. 这曲面必需捕获到电路的所有移动部分的相对运动。

再度强调一次,闭合回路不需要对应于实际电流的流动路径。电磁感应倚赖的是相对运动,闭合回路必需捕获所有相对运动。对于图1所示案例,因为电流流动回路的一部分分布于空间的某区域,有很多条可能回路可以选来计算趋动电流的电动势。图2展示出两条可能回路。所有的可能回路必需包括回程路径,但是在圆盘区域,展示出两条可能路径:一条是几何简单路径,另一条是迂回曲折路径。选择哪一条路径乃见仁见智之举。但是,一旦做出选择,就不能在计算中更改路径,必需使用固定于圆盘的同样路径,跟著圆盘一同旋转,计算切割过的磁通量。

 
图3,法拉第圆盘被映射为滑动的长方形导体。圆盘被视为圆环,沿著半径切开,然后弯开为长方块。

对于这案例,所有这些回路获得的磁通切割率都相同,因而电动势也相同。为了帮助理解这路径独立的点子,如图3所示,法拉第圆盘被展开为长方块,使得这问题看起来好似滑动的长方块问题。对于滑动的长方块案例,很明显地,在长方块内部,电流流动的图样与时间无关,因此也与电路的磁通切割率无关。所以,不需要思考电流怎样流过长方块(或圆盘)。任意连结长方形顶部轨道与底部轨道(从转轴经过圆盘到金属刷)的路径选择,其随著长方块的移动(随著圆盘的旋转)会扫出同样的磁通切割率,也会计算出同样的电动势。

更多观察

编辑

磁铁到底是否在旋转,这事实对于本分析无关紧要,因为相关资料并没有出现于法拉第感应定律。实际而言,假设磁铁具有圆柱对称性,则旋转磁铁绝不会改变电磁场。同样地,将磁铁与圆盘一起旋转,或将圆盘旋转而固定磁铁不动,两种方式得到的结果相同。关键是在于圆盘与回程导体之间的相对运动,而不是圆盘与磁铁之间的相对运动。

为了清楚解释这论点,将法拉第圆盘修改,将回程导体改为另外一个圆盘,也就是说,将两个圆盘导体安装于同一个转轴,让这两个圆盘在转轴与周边都拥有电接触点。则电流会与两个圆盘的相对旋转运动成正比,与磁铁的任意旋转无关。

法拉第感应定律不适用案例

编辑
 
图4,根据费曼教科书的例子给出的案例。对于这案例,法拉第定律不适用。光电导体长方块(淡蓝色)沿著两条平行导线滑行。在某狭窄固定区域(深蓝色),照射强烈光波,施加强烈磁场。当长方块行经这狭窄固定区域时,被照射到的材料会出现导电性质。由于劳仑兹力定律,整个电路会出现电动势与电流(金黄色)。

如图4所示,光电导体长方块平移于两条平行导线。在某狭窄固定区域,照射强烈光波,施加强烈磁场。当长方块行经这狭窄固定区域时,被照射到的光电导体会出现导电性质。由于劳仑兹力定律,会有电流从顶方导线,经过这狭窄固定区域的光电导体,流动到底方导线,然后经过连接电路,回到顶方导线。对于这案例,电路固定不动,穿过电路的磁通量不变,所以,应用法拉第定律计算出来的电流为零。但是,劳仑兹力定律建议,电流实际存在。

这案例是根据物理大师理查·费曼想出来的点子,凸显法拉第定律(即连结电动势与磁通量之间的关系的版本,费曼称为“通量定则”)不适用于某些状况的事实。费曼这样说:[2]

对于这案例,通量定则不适用。通量定则只能应用于一类电路,其路径的实体物质不能改变。假若电路路径的实体物质有所改变,则必须回到基本定律。以下两个基本定律永远会给出正确的物理
 
 
— 理查·费曼 《费曼物理学讲义》

费曼应用劳仑兹定律来解释为何会出现这种现象。重点是通量定则只适用于某些状况,虽然这些是非常实用的状况。

狭义相对论的解释

编辑

假若应用狭义相对论,就不会遭遇任何吊诡或困扰。思考狭窄固定区域的参考系   ,对于处于这参考系   的观测者而言,光电导长方块以速度   移动。恰巧处于狭窄固定区域的光电导物质,由于被强烈光波照射,会变得具有导电性质,其载有电量   的载电粒子会感受到劳仑兹力  

换到光电导长方块的参考系   。对于处于参考系   的观测者而言,光电导长方块是固定不动,狭窄光波照射区域是以速度   移动,磁场为   ,电场为   ;其中, 劳仑兹因子。所以,其载有电量   的载电粒子会感受到劳仑兹力  

注意到从参考系   变换到参考系   ,劳仑兹的变换为

 

这与分别在参考系    推导出来的劳仑兹力表达式相符合。[3][4]

倜立实验

编辑
 
倜立实验电路图

通量定则不适用于倜立实验。图5展示“倜立实验”。[5]在这由物理学者唐纳德·倜立Donald Tilley)设计出的实验里,整个电路是由两个回路或网目组成。在右手边回路串联了一具检流计。在左手边回路中心置放了一块磁铁,其产生的磁场为   。两个回路共同享有一个转闸开关。首先设定转闸开关与端点1相接触,左手边回路为开路,右手边回路为闭路。然后旋转转闸开关,改与端点2相接触,使得右手边回路成为开路,左手边回路仍旧为开路,但整个电路成为闭路。注意到磁场并没有改变,但是穿过的面积变大,因此,磁通量也会改变。可是,检流计的量针并没有偏动(假定可以忽略转闸开关旋转时的效应),这意味著检流计并没有检测到任何感应电动势。所以,法拉第定律不适用于这案例。

有些物理学者认为,在法拉第实验里,感应电压的出现,是因为电路切割了磁场线,而不是因为实际磁通量有所变化。这可以从倜立实验观察得知,因为,虽然穿过电路的磁通量有所变化,并没有任何磁场线移动经过电路,所以不会有任何感应电流。

物理学者艾伦·纳斯邦Allen Nussbaum)建议,只有在磁通量改变的时候,同时也给出机械功,法拉第定律才适用。[6]思考处于磁场   、载有电流  载流导线,其所感受到的作用力可以表达为

 

其中,  是载流导线所感受到的微小作用力,  是载流导线的微小线元素。

假设微小线元素   的位移为   ,则所做的机械功  

 

微小线元素   因为位移而遮盖的面积  

 

所做的机械功为

 

其中,  是磁通量。

这机械功等于电势 电荷  电势能

 

这样,可以得到法拉第定律的方程式:

 

注意到,法拉第定律的方程式为正确无误,若且唯若,机械功   不等于零。换句话说,只有倚赖做机械功来改变磁通量,法拉第定律才正确无误。

回到倜立实验。由于磁通量的改变并没有做出机械功(假定扭转转闸开关所做的机械功为零),所以,法拉第定律不适用,不会出现任何电动势或电流。

参考文献

编辑
  1. ^ M N O Sadiku. Elements of Electromagnetics Fourth. NY/Oxford UK: Oxford University Press. 2007: §9.2 pp. 386 ff. ISBN 0-19-530048-3. 
  2. ^ 费曼, 理查; 雷顿, 罗伯; 山德士, 马修, 費曼物理學講義 II 電磁與物質(2)介電質、磁與感應定律, 台湾: 天下文化书: pp. 206–211, 2006, ISBN 978-986-216-231-6 
  3. ^ Griffiths, David J., Introduction to Electrodynamics (3rd ed.), Prentice Hall: pp. 516–532, 1998, ISBN 0-13-805326-X 
  4. ^ Hughes, William; Young, Frederick, The electromagnetodynamics of fluids, Wiley: pp. 31, 1966 
  5. ^ Tilley, Donald, Exceptions to the Flux Rule for Electromagnetic Induction, American Journal of Physics, 1968, 36 (5): 458 
  6. ^ Nussbaum, Allen, Faraday's Law Paradoxes (PDF), Physics Education, 1972, 7 (4): 231, doi:10.1088/0031-9120/7/4/006 

参阅

编辑

进阶阅读

编辑
  • Michael Faraday,Experimental Researches in Electricity, Vol I, First Series, 1831 in Great Books of the Western World, Vol 45, R. M. Hutchins, ed., Encyclopædia Britannica, Inc., The University of Chicago, 1952. [1]页面存档备份,存于互联网档案馆
  • "Electromagnetic induction: physics and flashbacks" (PDF)页面存档备份,存于互联网档案馆) by Giuseppe Giuliani -讲述在法拉第圆盘里,劳仑兹力的物理行为。
  • P. J. Scanlon, R. N. Henriksen, and J. R. Allen, "Approaches to electromagnetic induction," Am. J. Phys. 37, 698–708 (1969). -描述怎样应用法拉第定律于法拉第圆盘。
  • Jorge Guala-Valverde, Pedro Mazzoni, Ricardo Achilles "The homopolar motor: A true relativistic engine," Am. J. Phys. 70 (10), 1052–1055 (Oct. 2002). -建议只有劳仑兹力定律可以解释法拉第圆盘,描述一些关于这论点的实验证据。
  • Frank Munley, Challenges to Faraday's flux rule, Am. J. Phys. 72, 1478 (2004). -更近期的关于法拉第通量定则的论述。
  • Richard Feynman, Robert Leighton, Matthew Sands, "The Feynman Lectures on Physics Volume II", Chapter 17 -解释法拉第吊诡(磁通量不变,但有电动势)与“摇摆导板吊诡”(磁通量改变,但没有感应出电动势)。
  • W. F. Hughes and F. J. Young, The Electromagnetodynamics of Fluids, John Wiley & Sons (1965) LCCC #66-17631. Chapters 1. Principles of Special Relativity and 2. The Electrodynamics of Moving Media. -只要熟读精通这两章内容,就可以解析所有感应电动势问题,并且解释文献里找到的所有相关吊诡。