冰川,寬泛地定義為當前或最近流動的積冰,被認為存在於現代火星表面大片特定的區域,並推斷在過去某些時候曾可能分布得更廣[1][2]。地表上凸起的葉狀特徵,即顯示出非牛頓流特徵的粘性流體和舌狀岩屑坡,現在幾乎被一致認為是真正的冰川[1][3][4][5][6][7][8][9][10]

高分辨率成像科學設備拍攝的火星冰川,冰川沿山谷向下移動,然後在平原上擴散開來。流動的證據來自地表上眾多的劃痕,冰川末端的邊緣脊可能是冰磧。位置為伊斯墨諾斯湖區普羅敦尼勒斯桌山群

然而,地表上的其他各種特徵如銳蝕地形[1][11]線狀谷底沉積[12][9]同心坑沉積[3][13]和弧嶺[10]等也被解釋為與冰流動直接有關,而在中緯度和極地地區圖像中所看到的各種表面紋理也認為與冰川升華有關係[14][15][16]

如今,被解釋為冰川的地貌主要僅限於緯度約30度的極向緯度帶[17],在伊斯墨諾斯湖區發現了特別的豐度[2]。根據目前的火星大氣模型,水冰如暴露在火星中緯度地表,應該是不穩定的[18]。因此,人們認為大多數冰川必須覆蓋一層碎石或塵埃,以阻止水蒸氣從升華的冰層中自由轉移到空氣中[8][18][19]。這也表明,在最近的地質史中,火星氣候一定有所不同,才能讓冰川在這些緯度穩定增長[17]。這也提供了表明過去火星傾角發生過重大變化的有利證據,這一點可通過火星軌道建模得到獨立證明[20]。過去冰川作用的證據也出現在熱帶地區數座火星火山的山峰上[21][22][23]

就像地球上的冰川一樣,火星上的冰川也不是純淨的水冰[1][10]。許多被認為含有相當大比例的碎屑,其中相當一部分可更準確地描述為岩石冰川[23][24][25]。由於多年來,推測的冰川地貌集中區-中緯度區,所模擬的水冰並不穩定,所以人們認為火星上幾乎所有的冰川都是岩石冰川[26]。然而,最近由火星勘測軌道飛行器沙拉德雷達進行的直接觀測證實,至少有一些特徵是相對純淨的水冰,因此是真正的冰川[6][8]。一些研究者還聲稱,在某些罕見條件下,火星上形成了固體二氧化碳冰川[27]

有些景觀看起來就像地球上從山谷中流出的冰川,有些中間似乎被淘空,看上去像所有積冰都已消融,只剩下冰磧—冰川攜帶的泥土和碎屑的冰川遺蹟[28]。這些所謂的山嶽冰川被稱為類冰川形態(GLF)或類冰川流(GLF)[29]。類冰川形態是一條更晚出現的術語,可能更準確,因為我們無法確定該結構目前是否在移動[30]。另一條有時出現在文獻中的更一般性術語是粘性流特徵(VFF)[30]

雷達研究

編輯

火星勘測軌道飛行器淺層雷達(SHARAD)進行的研究表明,舌狀岩屑坡(LDA)和線狀谷底沉積(LVF)中含有純水冰,上面覆蓋着一層將它們隔開的薄薄岩石[31][32]。在南半球[33]和北半球[34]都發現了冰。尼爾斯·玻爾研究所的研究人員結合雷達觀測與冰流建模,認為火星所有冰川中的冰相當於一層可覆蓋整個火星表面1.1米厚的冰層。冰仍然存在的事實表明,一層厚厚的塵埃保護了冰,而當前火星上的大氣條件是,任何暴露的水冰都會升華[35][36][37]

HiWish計劃高分辨率成像科學設備看到的沿山谷移動的火星冰川。

氣候變化

編輯

人們認為,當火星的軌道傾斜與現在有很大不同時(該行星自轉軸有相當大的「擺動」,這意味着它的角度會隨時間而變化),冰就會積聚起來[38][39][40]。數百萬年前,火星自轉軸的傾斜度為45度,而不是現在的25度。它的傾斜度,也稱為傾角,變化很大,因為它的兩顆小衛星不能像我們的月球一樣穩定它。

火星上的許多地貌,尤其是伊斯墨諾斯湖區,被認為含有大量的冰。關於冰的起源,最流行的模型是該行星自轉軸傾斜度的巨大變化所引起的氣候轉變。有時傾斜角度甚至超過80度[41][42],傾斜角度的巨大變化解釋了火星上許多富冰的特徵。

研究表明,當火星的傾角從目前的25度上升至45度時,兩極的冰就不再穩定[43]。此外,在如此高的傾角下,儲存的固體二氧化碳(乾冰)會升華,從而增加了大氣壓,氣壓的增加又會使更多的塵埃滯留在大氣中,大氣中的水分會以雪或冰的形式落到塵埃顆粒上,計算表明這種物質將匯集在中緯度地區[44][45]。火星大氣環流模型預測了富冰塵埃會在發現富冰特徵的同一地區聚集[42]。當傾角開始回復到較低值時,冰開始升華(直接變成氣體)並留下塵埃[46][47]。滯留的沉積物覆蓋了下方的物質,因此,隨着每次高傾斜水平的循環,就會留下一些富冰的覆蓋層[48],平整的地表覆蓋層可能只代表相對較新的物質。

地貌

編輯

同心坑沉積、線狀谷底沉積和舌狀岩屑坡

編輯

有幾種類型的地貌已被確認可能是覆蓋着泥土和岩石碎屑的巨大冰積物[49][50][51][52]同心坑沉積(CCF)包含數十到數百道同心脊,這些同心脊是由隕坑中有時厚達數百米的冰移動堆積而成[53][54]線狀谷底沉積(LVF)是谷底中的突脊線[55][56][57],這些線紋可能是隨其他冰川沿山谷向下移動所形成;有些冰川似乎來自桌山和地垛周圍的物質[58],它們被稱為舌狀岩屑坡(LDA)。所有這些被認為含有大量水冰的地貌都位於南、北半球的中緯度地區[59][60][61]。這些區域有時被稱為銳蝕地形,因為它有時會被改變。藉助火星全球探勘者號火星勘測軌道飛行器上的高分辨率相機,我們發現舌狀岩屑堆、線狀谷底沉積和同心坑沉積的表面具有類似人腦表面的複雜脊狀褶皺,其中寬脊被稱為細胞閉合型腦紋地形,不太常見的窄脊則稱為細胞開放型腦紋地形[62]。人們認為,寬厚的細胞閉合型地形內仍包裹着冰核,當冰核最終消失時,寬脊中心會塌陷,形成窄脊的開放型腦紋地形。今天,人們普遍認為,類冰川形態、舌狀岩屑坡、線狀谷底沉積和同心坑沉積都是相關的,都具有相同的表面紋理。山谷中的類冰川形態和斗狀壁凹可能會與其他形態結合,形成舌狀岩屑坡。當兩側相對的舌狀岩屑坡匯聚到一起時,則會形成線狀谷底沉積[63]

這些特徵中很多都可在北半球火星分界區附近找到,主要分布於0度到東經70度之間[64]。在這一地區附近,有以古代名稱命名的都特羅尼勒斯桌山群普羅敦尼勒斯桌山群尼羅瑟提斯桌山群

舌狀冰川

編輯

一些從山上流下冰川,被障礙物和山谷塑造成舌頭形狀[65]

丘狀地形

編輯

涅瑞達山脈中發現了類似瑞典北部維基冰磧的丘狀地形。據推測,這種地形是火星冰川融化的結果[66]

目前尚沒有任何表明火星火山上有冰川證據。

冰蓋

編輯

有很多證據表明,在該行星南極地區存在一座巨大的冰蓋[67][68][69][70]。在那裡發現了大量在冰下形成的蛇形丘,冰蓋的面積是德克薩斯州的兩倍[71]

地下冰

編輯
 
火星勘測軌道飛行器拍攝的增強色照片中,可看到陡峭斜坡上露出的地下冰剖面,它呈現出亮藍色[72]。該場景寬約500米,陡坡從平地下降約128米,冰層從地表往下延伸到100米或更深處[73]

火星上有巨大的冰川,隱藏在中緯度廣闊地區的一層岩石碎屑下。這些冰川可能是該星球上為簡單生命形式和未來定居者提供生命支持的大型水庫[74]。德克薩斯大學奧斯汀分校的約翰·霍爾特(John Holt)和其他人的研究發現,所研究的特徵之一比洛杉磯大三倍,厚達800米,而且還有更多[75][76]

美國宇航局的海盜號軌道飛行器在20世紀70年代發現了一些類似冰川的特徵。自那時以來,越來越多的先進儀器研究了冰川狀地貌。火星全球探勘者號2001火星奧德賽號火星快車號火星勘測軌道飛行器則獲得了更詳細的數據。

圖集

編輯

火星交互地圖

編輯
 阿刻戎塹溝群阿西達利亞平原阿爾巴山亞馬遜平原阿俄尼亞高地阿拉伯高地阿耳卡狄亞平原阿耳古瑞高原阿耳古瑞平原克律塞平原克拉里塔斯槽溝塞東尼亞區桌山代達利亞高原埃律西昂山埃律西昂平原蓋爾撞擊坑哈德里亞卡火山口希臘山脈希臘平原赫斯珀利亞高原霍頓撞擊坑伊卡利亞高原伊希斯平原耶澤羅撞擊坑羅蒙諾索夫撞擊坑盧庫斯高原呂科斯溝脊地李奧撞擊坑盧娜高原馬萊阿高原馬拉爾迪隕擊坑瑪萊奧提斯塹溝群Mareotis Tempe珍珠高地米氏隕擊坑米蘭科維奇撞擊坑內彭西斯桌山群涅瑞達山脈尼羅瑟提斯桌山群諾亞高地奧林波斯槽溝群奧林帕斯山南極高原普羅米修高地普羅敦尼勒斯桌山群塞壬高地西緒福斯高原太陽高原敘利亞高原坦塔羅斯槽溝群滕比高地辛梅利亞高地示巴高地塞壬高地塔爾西斯山群特拉克圖斯坑鏈第勒納高地尤利西斯山烏拉紐斯火山口烏托邦平原水手谷北方大平原克珊忒高地
  火星全球地形交互式圖像地圖。將懸停在圖像上可查看 60 多個著名地理特徵的名稱,單擊可鏈接到它們。圖底顏色表示相對高度,根據來自美國宇航局火星全球探勘者號火星軌道器激光高度計的數據。白色和棕色表示海拔最高(+12 至 +8 公里);其次是粉紅和紅色(+8 至 +3 公里);黃色為 0 公里;綠色和藍色是較低的高度(低至 -8 公里)。軸線緯度極地已備註。

另請查看

編輯

參考文獻

編輯
  1. ^ 1.0 1.1 1.2 1.3 "The Surface of Mars" Series: Cambridge Planetary Science (No. 6) ISBN 978-0-511-26688-1 Michael H. Carr, United States Geological Survey, Menlo Park
  2. ^ 2.0 2.1 Hugh H. Kieffer. Mars. University of Arizona Press. 1992 [March 7, 2011]. ISBN 978-0-8165-1257-7. (原始內容存檔於2017-03-12). 
  3. ^ 3.0 3.1 Milliken, R. E.; Mustard, J. F.; Goldsby, D. L. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research. 2003, 108 (E6): 5057. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002je002005. 
  4. ^ Squyres, S.W.; Carr, M.H. Geomorphic evidence for the distribution of ground ice on Mars. Science. 1986, 213 (4735): 249–253 [2022-03-14]. Bibcode:1986Sci...231..249S. PMID 17769645. S2CID 34239136. doi:10.1126/science.231.4735.249. (原始內容存檔於2021-07-23). 
  5. ^ Head, J.W.; Marchant, D.R.; Dickson, J.L.; Kress, A.M. Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth Planet. Sci. Lett. 2010, 294: 306–320. Bibcode:2010E&PSL.294..306H. doi:10.1016/j.epsl.2009.06.041. 
  6. ^ 6.0 6.1 Holt, J.W.; et al. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science. 2008, 322 (5905): 1235–1238. Bibcode:2008Sci...322.1235H. PMID 19023078. S2CID 36614186. doi:10.1126/science.1164246. 
  7. ^ Morgan, G.A.; Head, J.W.; Marchant, D.R. Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events. Icarus. 2009, 202 (1): 22–38. Bibcode:2009Icar..202...22M. doi:10.1016/j.icarus.2009.02.017. 
  8. ^ 8.0 8.1 8.2 Plaut, J.J.; Safaeinili, A.; Holt, J.W.; Phillips, R.J.; Head, J.W.; Sue, R.; Putzig, A. Frigeri Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophys. Res. Lett. 2009, 36: L02203. Bibcode:2009GeoRL..3602203P. doi:10.1029/2008gl036379. 
  9. ^ 9.0 9.1 Baker, D.M.H.; Head, J.W.; Marchant, D.R. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus. 2010, 207 (1): 186–209. Bibcode:2010Icar..207..186B. doi:10.1016/j.icarus.2009.11.017. 
  10. ^ 10.0 10.1 10.2 Arfstrom, J. Terrestrial analogs and interrelationships. Icarus. 2005, 174 (2): 321–335. Bibcode:2005Icar..174..321A. doi:10.1016/j.icarus.2004.05.026. 
  11. ^ Lucchitta, Baerbel K. Ice and debris in the fretted terrain, Mars. Journal of Geophysical Research: Solid Earth. 1984, 89 (S02): B409–B418. Bibcode:1984LPSC...14..409L. doi:10.1029/jb089is02p0b409. 
  12. ^ Lucchitta, Baerbel K. Ice and debris in the fretted terrain, Mars. Journal of Geophysical Research: Solid Earth. 1984, 89: B409–B418. Bibcode:1984LPSC...14..409L. doi:10.1029/jb089is02p0b409. 
  13. ^ Levy, Joseph S.; Head, James W.; Marchant, David R. Concentric crater fill in Utopia Planitia: History and interaction between glacial "brain terrain" and periglacial mantle processes. Icarus. 2009, 202 (2): 462–476. Bibcode:2009Icar..202..462L. doi:10.1016/j.icarus.2009.02.018. 
  14. ^ Hubbard, Bryn; et al. Geomorphological characterisation and interpretation of a mid-latitude glacier-like form: Hellas Planitia, Mars. Icarus. 2011, 211 (1): 330–346. Bibcode:2011Icar..211..330H. doi:10.1016/j.icarus.2010.10.021. 
  15. ^ Arfstrom, J. Terrestrial analogs and interrelationships. Icarus. 2005, 174 (2): 321–335. Bibcode:2005Icar..174..321A. doi:10.1016/j.icarus.2004.05.026. 
  16. ^ Arfstrom, J., W. Hartmann. 2018. THE CAUSES OF VISCOUS FLOW SURFACE PATTERNS AT CRATER GREG AND DAO VALLIS. 49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083). 1156.pdf
  17. ^ 17.0 17.1 Head, J. W.; et al. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters. 2006, 241 (3): 663–671. Bibcode:2006E&PSL.241..663H. doi:10.1016/j.epsl.2005.11.016. 
  18. ^ 18.0 18.1 Williams, K. E.; et al. Stability of mid-latitude snowpacks on Mars. Icarus. 2008, 196 (2): 565–577. Bibcode:2008Icar..196..565W. doi:10.1016/j.icarus.2008.03.017. 
  19. ^ Head, J.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; et al. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature. 2005, 434 (7031): 346–350. Bibcode:2005Natur.434..346H. PMID 15772652. S2CID 4363630. doi:10.1038/nature03359. 
  20. ^ Laskar, Jacques; et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars (PDF). Icarus. 2004, 170 (2): 343–364 [2022-03-14]. Bibcode:2004Icar..170..343L. doi:10.1016/j.icarus.2004.04.005. (原始內容存檔 (PDF)於2021-08-12). 
  21. ^ Head, J. W.; et al. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature. 2005, 434 (7031): 346–351. Bibcode:2005Natur.434..346H. PMID 15772652. S2CID 4363630. doi:10.1038/nature03359. 
  22. ^ Shean, David E. Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit. Journal of Geophysical Research. 2005, 110 (E5): E05001. Bibcode:2005JGRE..110.5001S. doi:10.1029/2004JE002360. 
  23. ^ 23.0 23.1 Head, James W.; Marchant, David R. Cold-based mountain glaciers on Mars: western Arsia Mons. Geology. 2003, 31 (7): 641–644. Bibcode:2003Geo....31..641H. doi:10.1130/0091-7613(2003)031<0641:cmgomw>2.0.co;2. 
  24. ^ Colaprete, Anthony, and Bruce M. Jakosky. "Ice flow and rock glaciers on Mars." Journal of Geophysical Research: Planets 103.E3 (1998): 5897-5909.
  25. ^ Haeberli, Wilfried; et al. Permafrost creep and rock glacier dynamics. Permafrost and Periglacial Processes. 2006, 17 (3): 189–214. doi:10.1002/ppp.561. 
  26. ^ Squyres, Steven W. Martian fretted terrain: Flow of erosional debris. Icarus. 1978, 34 (3): 600–613. Bibcode:1978Icar...34..600S. doi:10.1016/0019-1035(78)90048-9. 
  27. ^ Kreslavsky, Mikhail A.; Head, James W. Carbon dioxide glaciers on Mars: Products of recent low obliquity epochs (?). Icarus. 2011, 216 (1): 111–115. Bibcode:2011Icar..216..111K. doi:10.1016/j.icarus.2011.08.020. 
  28. ^ Milliken, R.; Mustard, J.; Goldsby, D. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. 2003, 108 (E6): 5057. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002JE002005. 
  29. ^ Arfstrom, J; Hartmann, W. Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships. Icarus. 2005, 174 (2): 321–335. Bibcode:2005Icar..174..321A. doi:10.1016/j.icarus.2004.05.026. 
  30. ^ 30.0 30.1 Hubbard, B.; Milliken, R.; Kargel, J.; Limaye, A.; Souness, C. Geomorphological characterisation and interpretation of a mid-latitude glacier-like form: Hellas Planitia, Mars. Icarus. 2011, 211 (1): 330–346. Bibcode:2011Icar..211..330H. doi:10.1016/j.icarus.2010.10.021. 
  31. ^ Plaut, J. et al. 2008. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2290.pdf
  32. ^ HiRISE | Merging Lobate Debris Aprons of Deuteronilus Mensae (PSP_009535_2240). [2022-03-14]. (原始內容存檔於2021-03-09). 
  33. ^ Holt, J.; Safaeinili, A.; Plaut, J.; Head, J.; Phillips, R.; Seu, R.; Kempf, S.; Choudhary, P.; Young, D.; Putzig, N.; Biccari, D.; Gim, Y. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science. 2008, 322 (5905): 1235–1238. Bibcode:2008Sci...322.1235H. PMID 19023078. S2CID 36614186. doi:10.1126/science.1164246. 
  34. ^ Plaut, J.; Safaeinili, A.; Holt, J.; Phillips, R.; Head, J.; Seu, R.; Putzig, N.; Frigeri, A. Radar evidence for ice in lobate debris aprons in the midnorthern latitudes of Mars. Geophys. Res. Lett. 2009, 36 (2): n/a. Bibcode:2009GeoRL..3602203P. doi:10.1029/2008GL036379. 
  35. ^ Mars Has Belts of Glaciers Consisting of Frozen Water - SpaceRef. [失效連結]
  36. ^ Ice on Mars: Mars has belts of glaciers consisting of frozen water. [2022-03-14]. (原始內容存檔於2022-03-14). 
  37. ^ Karlsson, N.; Schmidt, L.; Hvidberg, C. Volume of Martian mid-latitude glaciers from radar observations and ice-flow modelling. Geophysical Research Letters. 2015, 42 (8): 2627–2633. Bibcode:2015GeoRL..42.2627K. doi:10.1002/2015GL063219. 
  38. ^ Madeleine, J. et al. 2007. Mars: A proposed climatic scenario for northern mid-latitude glaciation. Lunar Planet. Sci. 38. Abstract 1778.
  39. ^ Madeleine, J. et al. 2009. Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario. Icarus: 203. 300-405.
  40. ^ Mischna, M. et al. 2003. On the orbital forcing of martian water and CO2 cycles: A general circulation model study with simplified volatile schemes. J. Geophys. Res. 108. (E6). 5062.
  41. ^ Touma, J.; Wisdom, J. The Chaotic Obliquity of Mars. Science. 1993, 259 (5099): 1294–1297. Bibcode:1993Sci...259.1294T. PMID 17732249. S2CID 42933021. doi:10.1126/science.259.5099.1294. 
  42. ^ 42.0 42.1 Laskar, J.; Correia, A.; Gastineau, M.; Joutel, F.; Levrard, B.; Robutel, P. Long term evolution and chaotic diffusion of the insolation quantities of Mars (PDF). Icarus. 2004, 170 (2): 343–364 [2022-03-14]. Bibcode:2004Icar..170..343L. doi:10.1016/j.icarus.2004.04.005. (原始內容存檔 (PDF)於2021-08-12). 
  43. ^ Levy, J.; Head, J.; Marchant, D.; Kowalewski, D. Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix landing site: Implications for substrate properties and climate-driven morphological evolution. Geophys. Res. Lett. 2008, 35 (4): L04202. Bibcode:2008GeoRL..35.4202L. doi:10.1029/2007GL032813 . 
  44. ^ Levy, J.; Head, J.; Marchant, D. Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations. J. Geophys. Res. 2009a, 114 (E1): E01007. Bibcode:2009JGRE..114.1007L. doi:10.1029/2008JE003273. 
  45. ^ Hauber, E., D. Reiss, M. Ulrich, F. Preusker, F. Trauthan, M. Zanetti, H. Hiesinger, R. Jaumann, L. Johansson, A. Johnsson, S. Van Gaselt, M. Olvmo. 2011. Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard. In: Balme, M., A. Bargery, C. Gallagher, S. Guta (eds). Martian Geomorphology. Geological Society, London. Special Publications: 356. 111-131
  46. ^ Mellon, M.; Jakosky, B. The distribution and behavior of Martian ground ice during past and present epochs. J. Geophys. Res. 1995, 100 (E6): 11781–11799. Bibcode:1995JGR...10011781M. doi:10.1029/95je01027. 
  47. ^ Schorghofer, N. Dynamics of ice ages on Mars. Nature. 2007, 449 (7159): 192–194. Bibcode:2007Natur.449..192S. PMID 17851518. S2CID 4415456. doi:10.1038/nature06082. 
  48. ^ Madeleine, J., F. Forget, J. Head, B. Levrard, F. Montmessin. 2007. Exploring the northern mid-latitude glaciation with a general circulation model. In: Seventh International Conference on Mars. Abstract 3096.
  49. ^ Head, J. and D. Marchant. 2006. Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30 - 50 N latitude band. Lunar. Planet. Sci. 37. Abstract 1127
  50. ^ Head, J. and D. Marchant. 2006. Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems. Lunar. Planet. Sci. 37. Abstract 1128
  51. ^ Head, J., et al. 2006. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for the late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett. 241. 663-671
  52. ^ Head, J., et al. 2006. Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophys. Res Lett. 33
  53. ^ Garvin, J. et al. 2002. Lunar Planet. Sci: 33. Abstract # 1255.
  54. ^ NASA.gov. [2022-03-14]. (原始內容存檔於2016-08-23). 
  55. ^ Carr, M. 2006. The Surface of Mars. Cambridge University Press. ISBN 978-0-521-87201-0
  56. ^ Squyres, S. 1978. Martian fretted terrain: Flow of erosional debrid. Icarus: 34. 600-613.
  57. ^ Levy, J. et al. 2007. Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary. J. Geophys. Res. 112
  58. ^ Baker, D., et al. 2009. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus: 207. 186-209.
  59. ^ Marchant, D. and J. Head. 2007. Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climatic change on Mars. Icarus: 192.187-222
  60. ^ Dickson, J., et al. 2008. Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases. Geology: 36 (5) 411-415
  61. ^ Kress, A., et al. 2006. The nature of the transition from lobate debris aprons to lineated valley fill: Mamers Valles, Northern Arabia Terra-Deuteronilus Mensae region on Mars. Lunar. Planet. Sci. 37. Abstract 1323
  62. ^ Levy, J.; Head, J.; Marchant, D. Concentric crater fill in Utopia Planitia: History and interaction between glacial brain terrain and periglacial mantle processes. Icarus. 2009, 202 (2): 462–476. Bibcode:2009Icar..202..462L. doi:10.1016/j.icarus.2009.02.018. 
  63. ^ Souness, C.; Hubbard, B. An alternative interpretation of late Amazonian ice flow: Protonilus Mensae, Mars. Icarus. 2013, 225 (1): 495–505. Bibcode:2013Icar..225..495S. doi:10.1016/j.icarus.2013.03.030. 
  64. ^ Barlow, N. 2008. Mars: An Introduction to its Interior, Surface and Atmosphere. Cambridge University Press. ISBN 978-0-521-85226-5
  65. ^ Forget, F., et al. 2006. Planet Mars Story of Another World. Praxis Publishing, Chichester, UK. ISBN 978-0-387-48925-4
  66. ^ Johnsson, A.; Reiss, D.; Hauber, E.; Johnson, M.D.; Olvmo, M.; Hiesinger, H. Veiki-moraine-like Landforms in the Nereidum Montes Region on Mars: Insights from Analogues in Northern Sweden (PDF). 47th Lunar and Planetary Science Conference. 2016 [2022-03-14]. (原始內容存檔 (PDF)於2020-08-07). 
  67. ^ Allen, C. Volcano-ice interactions on Mars. Journal of Geophysical Research. 1979, 84 (B14): 8048–8059. Bibcode:1979JGR....84.8048A. doi:10.1029/jb084ib14p08048. 
  68. ^ Howard, 1981
  69. ^ Kargel, J.; Strom, R. Ancient glaciation on mars. Geology. 1992, 20 (1): 3–7. Bibcode:1992Geo....20....3K. doi:10.1130/0091-7613(1992)020<0003:AGOM>2.3.CO;2. 
  70. ^ Head, J, S. Pratt. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and pending of meltwater. J. Geophys. Res.-Planet, 106 (E6), 12275-12299.
  71. ^ Scanlon, K.; et al. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition. Icarus. 2018, 299: 339–363. Bibcode:2018Icar..299..339S. doi:10.1016/j.icarus.2017.07.031. 
  72. ^ Steep Slopes on Mars Reveal Structure of Buried Ice頁面存檔備份,存於網際網路檔案館). NASA Press Release. 11 January 2018.
  73. ^ Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W. Exposed subsurface ice sheets in the Martian mid-latitudes. Science. 2018, 359 (6372): 199–201. Bibcode:2018Sci...359..199D. PMID 29326269. doi:10.1126/science.aao1619 . 
  74. ^ HiRISE | Icy Flow in a Crater (ESP_049028_2065). [2022-03-14]. (原始內容存檔於2020-08-07). 
  75. ^ .http://www.timesonline.co.uk/tol/news/science/article5200977.ec
  76. ^ NBC News

外部連結

編輯