使用者:台北人/沙盒/沙盒1

這是台北人的沙盒。此為英語維基百科冰川消融的翻譯。未經允許請勿移除此模板。

冰川消融,又稱冰川後退,是指冰川因冰的融化及蒸發,進而導致冰川長度縮短甚至消失的現象,由於冰川大量消融的時期與大氣中溫室氣體大量增加的時間點接近,因此常做為地球正在經歷暖化的證據之一。冰川消融衍生的影響包括淡水供應不足、不利農業灌溉、生態環境改變及海平面上升[1][2]

小冰期(1550年~1850年)期間,世界平均氣溫下降,冰川增長;進入20世紀後,世界各地的冰川開始縮短,對於山谷冰川的研究顯示該現象與19世紀後期以來全球氣溫上升相關。[3][4]1950年至1980年間,由於氣溫下降,部分冰川消融速度減緩甚至開始增長。自1980年以來,由於全球暖化的加速與加劇,冰川消融變得愈來愈快速且普遍。部分冰川已經完全消失,而餘下冰川也飽受威脅。作為部分地區(如喜馬拉雅山區及安地斯山脈)主要的供水來源之一及可能引發的海平面上升,冰川消融對山區及沿海地區居民生活具有潛在影響。

冰川質量平衡

編輯
 
這張地圖顯示與1970年至2004年間,世界各地的173條冰川(採樣冰川多位於北美及歐洲)增長與消融的狀況。紅色及黃色表示冰川消融,藍色代表冰川增長。
 
WGMSNSIDC的全球冰川質量平衡報告(1960年~2000年)。20世紀80年代後冰川消融速度加速,至2000年時平均年消融達120公分。

冰川質量平衡是冰川成長的關鍵。如果堆積區內冰的堆積量超過因融化或在消融區損失的冰量內冰川將會前進,反之則會退縮。消融中的冰川會達到負冰川質量平衡直到達到新的平衡。 冰川質量平衡對冰川十分重要。[5] 氣候變遷導致溫度與降雪異常,而如果溫度持續提升或降雪量減少,冰川將達到負質量平衡:冰川會消融,直到達到平衡;如果溫度持續降低或降雪量增加,冰川則會達到正質量平衡:冰川會增長,持續到達到平衡為止。目前大部分的冰川皆達到負質量平衡並持續消融中。[6]

冰川的消融導致低海拔地區的冰川消失。由於高海拔地區氣溫較低,低海拔地區冰川的消失減少了整體消融,進而使冰川有機會重新平衡。[7][8]

測量消融的方法包括在冰川末緣定樁、全球定位測繪、航空測繪及雷射高度計[9] 負質量平衡的徵兆是冰川的長度變短,這顯示堆積區縮小了。而堆積區的縮小意味著不只冰川變短,堆積區極有可能開始分裂,最後將導致冰川消失。[10] 例如美國華盛頓州伊斯頓冰川的長度雖然將可能縮短到只剩一半,但消融的速度正在慢慢減緩。然而美國蒙大拿州格林納爾冰川卻逐漸萎縮,直至消失。兩者之間不同之處在於伊斯頓冰川的頂部持續有降雪,而格林納爾冰川的頂部已裸露,加速消融速度。

中緯度的冰川

編輯

中緯度的冰川位於北回歸線北極圈之間或南回歸線南極圈之間。在這範圍中的冰川,冰源主要來自山嶽冰川、山谷冰川甚至是冰帽,因此主要位於高山地區。[11]  世界上所有的中緯度冰川皆位於山脈上,如:亞洲的喜馬拉雅山脈;歐洲的阿爾卑斯山脈庇里牛斯山脈;北美洲的洛磯山脈太平洋海岸山脈;南美洲的安地斯山脈以及紐西蘭的山區。[12] 在這區域中,冰川比低緯地區更常見,且愈靠近極圈數量及規模也愈大。事實上,在過去150年中,中緯地區的冰川是被研究最多的。目前所有中緯度的冰川都處於負質量平衡的狀態中。

北半球—歐亞大陸

編輯
 
這張來自冰川委員會的年度調查顯示了義大利和瑞士阿爾卑斯山冰川前進的百分比。 20世紀中期出現了強勁的消融趨勢,但並不像現在那樣極端;目前的消融代表了較小的冰川已經進一步地減少。

歐洲

編輯

在法國,該國所有六個主要冰川都處於消融狀態。阿爾卑斯山的最高峰白朗峰阿讓蒂耶爾冰川,自1870年來已經消融了1,150公尺(3,770英尺)。[13]其他白朗峰上的冰川也消融許多,如該國最大的冰川冰海冰川(長12公里(7.5英里)),在1994年至2008年間從消融了500公尺(1,600英尺) [14][15] ,而若從小冰期算起則已消融了2,300公尺(7,500英尺)。

研究人員發現,阿爾卑斯山的冰川似乎比幾十年前消融得更快。蘇黎世大學2009年發表的一篇論文中,自1973年以來對89個瑞士冰川的調查,發現有76個消融,5個靜止,8個開始向前增長。特里夫特冰川在2003年至2005年間經歷了最大的消融:350公尺(1,150英尺)。阿萊奇冰川是瑞士最大的冰川,而從1880年至2009年,阿萊奇冰川消融了2.8公里(1.7英里)。消融速率自1980年以來也有所增加,在過去20%的時間內消融了全部長度的30%(800公尺(2,600英尺))。

 
2005年的莫特瑞許冰川(右)和佩斯冰川(左)

莫特瑞許冰川是最早開始研究的冰川之一,自1878年開始測量長度。從1878年至1998年共消融了2公里(1.2英里),每年平均消融17公尺(56英尺)。但在1999年至2005年間消融的速度明顯增加,每年平均消融30公尺(98英尺)。同樣地,義大利的冰川中,只有約三分之一在1980年代消融。然而到了1999年,89%的冰川都開始消融。2005年時,該國的冰川委員會發現倫巴底的123條冰川正在消融。[16] 一項對義大利阿爾卑斯山的斯芙澤利納冰川進行的隨機研究顯示,2002年至2006年的消融速度遠高於過去35年。[17] 為了研究位於倫巴底高山地區的冰川,研究人員對從20世紀50年代到21世紀初拍攝的一系列空中和地面圖像進行了比較,並推斷出在1954年至2003年間大部分較小的冰川失去了一半以上的長度。[18] [19]

儘管阿爾卑斯山的冰川受到冰川學家的關注比歐洲其他地區更多,但研究顯示北歐的冰川也在退縮。自第二次世界大戰結束以來,塔爾法拉研究站瑞典大冰川進行了世界上為期最長的質量平衡研究。在瑞典北部的凱布訥山脈,1990年至2001年間對其中16條冰川的研究發現,有14條正在消融,1條正在增長,1條靜止。[20]挪威自19世紀初開始進行冰川研究,自20世紀90年代以來定期進行有系統的調查。因為內陸冰川的質量平衡通常是負的,因此在20世紀90年代,海洋冰川顯示出正向的質量平衡並增長。[21] 海洋冰川的增長有部分可歸因於1989年至1995年間的大雪。 然而,後來降雪量的減少導致大多數挪威冰川大幅度地消融。 如2010年對31個挪威冰川進行的調查顯示,27條正在消融,1條靜止,3條增長。

 
挪威的恩加布里恩冰川在2014年增長至海拔7公尺(23英尺)以內,是歐洲所有冰川中的最低海拔。

挪威的恩加布里恩冰川斯瓦蒂森冰帽入海冰川之一,在20世紀時有增長,但它在1999年至2014年間退縮了56公尺(184英尺)[22] 布林達爾冰川在2000年至2014年之間消融了56公尺(184英尺),而自小冰期結束以來已消融2公里(1.2英里)的蘭貝絲黛絲可卡冰川在1997年至2007年間消融了200公尺(660英尺)。[23]布里克斯達爾冰川在1996年至2004年間消融了230公尺(750英尺),而光在2004年中就消融了130公尺(430英尺);這是這條冰川自1900年以來最大幅度的消融。[24] 這個數字在2006年超過了其他4條冰川:珍達爾冰川、布林達爾冰川、布利斯達爾冰川巴格塞冰川(皆為約斯特冰帽的入海冰川)2005年秋季至2006年秋季,4條冰川消融了超過100公尺(330英尺)。[25]總結來說,從1999年至2005年,該冰川(布里克斯達爾冰川)消融了336公尺(1,102英尺)。 

西班牙庇里牛斯山脈,最近的研究顯示,在1981年至2005年期間,馬拉德塔山的冰川範圍和體積都有重大損失。 其中包括面積減少35.7%,從2.41平方公里(600英畝)減少到1.55平方公里(380英畝),總冰量減少0.0137平方公里(0.0033立方英里),冰川終點平均海拔高度增加 43.5米(143英尺)。[26] 自1991年以來,整個庇里牛斯山脈的冰川面積已經減少了50至60%。在此期間,巴萊圖冰川佩爾迪格羅冰川及和拉摩尼亞冰川已經完全消失。佩爾迪多冰川從90公頃縮小到40公頃。[27]

自1850年以來,阿爾卑斯山的冰川消融,根本原因是可以確定由工業黑碳引起的冰川反照率下降。 根據一份報告,這可能加速了歐洲冰川的退縮,否則這些冰川可能會繼續擴大到大約1910年。[28]

西伯利亞和俄羅斯遠東地區

編輯

西伯利亞通常被歸類為極地地區。由於冬季乾燥,僅在阿爾泰山脈上揚斯克山脈切爾斯基山脈孫塔爾哈亞塔山脈中有冰川,加上貝加爾湖附近的一些非常小的冰川。 由於貝加爾湖地區的冰川從未受到研究,自1989年以來可能已經完全消失。[29][30][31] 在1952年至2006年間,阿克圖盆地地區的冰川減少了7.2%。 這種收縮的趨勢主要發生在冰川的消融區。 根據2006年的一份報告,阿爾泰地區在過去的120年中平均溫度上升了攝氏1.2℃,其中大部分都是自20世紀末以來的增長。

俄羅斯遠東地區,由於堪察加半島冬季有來自阿留申低壓的溼氣,因此冰川數目較西伯利亞多。截至2010年,冰川總面積約為906平方公里(350平方英里),已知有448個冰川。[32] 而在千島群島南部和庫頁島,儘管冬季降雪量很大,但在夏季氣溫涼爽的情況下降雨量較高。即使是在該地區最高峰洛帕丁山,融化速度也過快,無法獲得正質量平衡。 在楚科奇半島,小型高山冰川數量眾多,但比堪察加的冰川範圍要小得多,總面積約為300平方公里(120平方英里)。

關於西伯利亞和俄羅斯遠東地區的冰川消融的資料不如世界上大多數其他冰川地區充足。造成這種情況的原因有幾個,主要原因是1989年共產主義倒台以來,監測站的數量大幅減少。引用錯誤:<ref>標籤中未填內容的引用必須填寫name屬性另一個因素是在20世紀40年代以前人們認為上揚斯克山脈和切爾斯基山脈不存在冰川,以及雖早已預測有冰川存在,但極度偏遠的堪察加半島及楚科奇自治區。不過對它們的研究仍可追溯至第二次世界大戰結束。引用錯誤:<ref>標籤中未填內容的引用必須填寫name屬性 儘管如此,除了堪察加半島的火山冰川外,現有的記錄確實顯示阿爾泰山脈所有冰川的全面消融。薩哈的冰川總面積達70平方公里,自1945年以來已經縮減了約28%,在一些地方每年達到幾個百分點,而在阿爾泰和楚科特山以及堪察加半島的非火山地區,消融幅度相當大。引用錯誤:<ref>標籤中未填內容的引用必須填寫name屬性

喜馬拉雅山和中亞

編輯
 
這張NASA拍攝於喜馬拉雅山的照片顯示消融中的冰川末端形成了冰蝕湖

喜馬拉雅山脈中亞其他山脈維持著大型冰川。在喜馬拉雅山脈中,估計有15,000條冰川,是興都庫什山脈喀喇崑崙山脈以及天山山脈的冰川數量的兩倍。這地區也是極地以外最大的冰川區域。[33] 這些冰川為蒙古中國西部、巴基斯坦阿富汗印度等乾旱地區提供了重要的水源。與世界上其他的冰川一樣,喜馬拉雅地區的冰川都處於負質量平衡。研究指出,從20世紀70年代初到21世紀初,冰的質量減少了9%。[34] 溫度的變化導致了冰川湖的形成以及膨脹,這可能導致冰川湖突發洪水(GLOFs)數量與機率增加。如果照目前的趨勢持續下去,冰的質量將逐漸減少,並將影響供水。[35]

在阿富汗的瓦罕走廊,30個冰川中有28個在1976年至2003年之間大幅度地消融,平均每年消融11公尺(36英尺)。[36] 其中,澤曼斯坦冰川在此期間消融了460公尺(1,510英尺),約佔其長5.2公里(3.2英里)的10%。[37]在1950年至1970年間,中國的612個冰川時有53%的冰川正在消融。 1990年以後,95%的冰川被測量出來正在消融,顯示冰川的消融變得更加普遍。 [38]喜馬拉雅山地區的冰川都處於消融之中。珠穆朗瑪峰北側流向西藏絨布冰川每年消融20公尺(66英尺)。在尼泊爾坤布地區,沿著喜馬拉雅山脈的前緣的15條冰川都有顯著的消融,平均每年消融28公尺(92英尺)。 [39] 其中最著名的是坤布冰川,從1976年到2007年,以每年18公尺(59英尺)的速度消融。 其他的案例還有印度的根戈德里冰川,它在1936年至1996年間消融了1,147公尺(3,763英尺),卻在倒數25年中發生了850公尺(2,790英尺)的消融。[40][41] 然而,冰川仍然超過30公里(19英里)長。 在錫金邦的26條冰川,從1976年至2005年間以每年平均13.02公尺(42.7英尺)的速度消融。[42] 總體而言,大喜馬拉雅地區的冰川平均每年退縮18至20公尺(59至66英尺)。[43] 大喜馬拉雅地區唯一可以看到冰川增長的區域是喀喇崑崙山脈,而且只有在最高海拔的冰川,但這可能是因為降水量增加,冰川末端因壓力下滑,並使冰川進一步累積冰雪。在1997年和2001年之間,長達68公里(42英里)的比亞佛冰川在中段增厚了10到25公尺(33到82英尺),但它沒有增長。[44]

隨著喜馬拉雅山脈冰川的退縮,已經形成了許多冰川湖泊。 而令人擔憂的是,研究人員估計位於尼泊爾和不丹的45條冰川有發生冰川湖突發洪水的潛在風險。[45] 一個確定具有潛在危險性的冰川湖是不丹的拉非斯特朗錯,其長度為1.6公里(0.99英里),寬度為0.96公里(0.6英里),深度為80公尺(260英尺)。但到了1995年,湖水已經膨脹到長1.94公里(1.21英里),寬1.13公里(0.70英里),深107米(351英尺)。 [46] 1994年,拉非斯特朗錯附近的盧吉錯的洪水造成23人死亡。[47]

吉爾吉斯阿希拉克山脈的冰川在1943年至1977年間經歷了輕微的消融,並在1977年至2001年間加速消融了其剩餘質量的20%。[48] 而吉爾吉斯、哈薩克中國共同擁有的天山山脈,在1955年至2000年間每年消融近2平方公里(0.48立方英里)的冰,而這是提供當地水源的主要來源。牛津大學的研究報告指出,在1974年至1990年期間,平均每條冰川消融本身質量的1.28% 。[49]

塔吉克帕米爾高原約有八千個冰川,其中大部分都處於消融狀態。[50] 在20世紀,塔吉克的冰川損失了20平方公里(4.8立方英里)的冰。 長達70公里(43英里)的費德先科冰川是塔吉克最大的冰川(同時也是地球上最大的非大陸冰川),在1933年至2006年間消融了1公里(0.62英里),但在1966年至2000年期間則消融了44平方公里(17平方英里) 。帕米爾高原地區在乾旱季節高度依賴冰川融水,而冰川持續消融將導致水量短期增加,但長期來看,流入河流和溪流的冰川融水將減少。[51]

北半球—北美洲

編輯
2003年至2010年間美洲融化的冰量佔同期全球融化冰量的25%。
 
1990年,位於北喀斯喀特國家公園融化後的劉易斯冰川

北美洲的冰川主要位於落基山脈太平洋海岸山脈山脊上,除了少數殘留在內華達山脈中的冰川。(不論格陵蘭島) 除了少數像塔庫冰川這樣的入海冰川,幾乎所有北美洲的冰川都處於消融狀態。 自1980年左右以來,速度迅速增加,而且從那以後的每十年以來總體上都比前一次有更快的退縮速率。 [52][53]

喀斯喀特山脈

編輯

喀斯喀特山脈位於北美洲的西部,北起加拿大不列顛哥倫比亞省南部,南至加利福尼亞州北部。 除了阿拉斯加外,美國約有一半的冰川位於加拿大—美國邊境和華盛頓州中部的I-90之間。 這些冰川含有大量的水,約有870,000立方公尺(1,140,000立方英尺)。
[54]

 
從1987年到2003年,博爾德冰川消融了450公尺(1,480英尺)。
 
從1990年到2005年,伊斯頓冰川消融了255公尺(837英尺)。

在1975年,由於平均氣溫降低和1944年至1976年間降水增加,許多北喀斯喀特的冰川都有所增長。但到了1987年,北喀斯喀特冰川開始消融,而且每年消融的速度愈來愈快。1984年至2005年間,北喀斯喀特的冰川平均厚度減少了12.5米(41英尺),體積減少了20-40%。

研究北喀斯喀特冰川的冰川學家發現,所有受監測的冰川都正在消融;而自1985年以來,蜘蛛冰川劉易斯冰川牛奶湖冰川大衛冰川已完全消失。白查克冰川格拉西爾峰附近)是一個著名的例子。冰川面積從1958年的3.1平方公里(1.2平方英里)縮小到2002年的0.9平方公里(0.35平方英里)。1850年至1950年間,貝克山東南側的博爾德冰川消融了2,700公尺(8,700英尺)。美國國家森林局觀察到因為1953年天氣較涼且潮濕,冰川開始增長。至1979年截止,共增長了743公尺(2,438英尺)。[55] 但冰川自1987年至2005年,消融了450公尺(1,480英尺)留下了貧瘠的土地。這次消融發生的原因是因為冬季降雪減少、夏季氣溫升高。在北喀斯喀特地區,冬季積雪量自1946年以來下降了25%,同期夏季氣溫上升了0.7°C(1.2°F)。截至2005年,67%的北喀斯喀特冰川處於負平衡狀態,無法在目前的氣候條件下保留下來。除非氣溫下降,積雪量增加,否則這些冰川最終會消失。[56]

洛磯山脈(美國)

編輯

蒙大拿州冰川國家公園,冰川數量迅速減少。幾十年來,美國國家公園管理局美國地質調查局繪製了每條冰川的面積。將19世紀中期的照片與當代圖像進行比較,可以充分證明自1850年以來冰河已經大量消融。航空測繪圖顯示,就連像格林納爾冰川的冰川都在消融。 與1850年首次調查時比較,大部分冰川都已經消融到原尺寸的三分之一,而且許多小冰川已完全消失。1850年被冰川覆蓋的區域中,(99平方公里(38平方英里))只有27%在1993年被覆蓋。[57] 研究人員認為到了2030年,冰川國家公園的絕大多數冰川將會消失,除非氣候變遷立即停止。[58] 

懷俄明州的氣候雖然較為乾旱,但仍然能夠支撐大提頓國家公園內的幾十條小冰川,這些冰川在過去50年內都有顯著的退縮。教室冰川位於公園西南部,是公園內較易前往的冰川之一,預計到2025年消失。在1950年至1999年的研究顯示,溫德河山脈布里傑-蒂頓國家森林肖松尼國家森林的冰川規模在同期間縮小了三分之一以上。照片顯示,今天的冰川只有18世紀90年代末拍攝時的一半。研究還顯示,20世紀90年代冰川退縮的比例大於過去100年中的每個年代。 干內冰川位於干內峰東北坡,是洛磯山脈最大的冰川。根據研究,自1920年以來,它已經消融了超過50%的質量,其中近一半的消融發生自1980年以來。[59]

Canadian Rockies and Coast and Columbia Mountains

編輯
 
Valdez Glacier has thinned 90米(300英尺) over the last century, exposing barren ground near the glacial margins.[60]

In the Canadian Rockies, glaciers are generally larger and more widespread than to the south in the Rocky Mountains. One of the more accessible in the Canadian Rockies is the Athabasca Glacier, which is an outlet glacier of the 325 km2(125 sq mi) Columbia Icefield. The Athabasca Glacier has retreated 1,500米(4,900英尺) since the late 19th century. Its rate of retreat has increased since 1980, following a period of slow retreat from 1950 to 1980. The Peyto Glacier in Alberta covers an area of about 12 km2(4.6 sq mi), and retreated rapidly during the first half of the 20th century, stabilized by 1966, and resumed shrinking in 1976.[61] The Illecillewaet Glacier in British Columbia's Glacier National Park (Canada), part of the Selkirk Mountains (west of the Rockies) has retreated 2 km(1.2 mi) since first photographed in 1887.

In Garibaldi Provincial Park in Southwestern British Columbia over 505 km2(195 sq mi), or 26%, of the park, was covered by glacier ice at the beginning of the 18th century. Ice cover decreased to 297 km2(115 sq mi) by 1987–1988 and to 245 km2(95 sq mi) by 2005, 50% of the 1850 area. The 50 km2(19 sq mi) loss in the last 20 years coincides with negative mass balance in the region. During this period all nine glaciers examined have retreated significantly.[62]

Alaska

編輯
 
Map of Glacier Bay. Red lines show glacial terminus positions and dates during retreat of the Little Ice Age glacier.
 
Maps showing retreat of Muir Glacier from 1941 to 1982

There are thousands of glaciers in Alaska but only few have been named. The Columbia Glacier near Valdez in Prince William Sound has retreated 15 km(9.3 mi) in the last 25 years. Its calved icebergs partially caused the Exxon Valdez oil spill, when the tanker changed course to avoid the ice tips. The Valdez Glacier is in the same area, and though it does not calve, has also retreated significantly. "A 2005 aerial survey of Alaskan coastal glaciers identified more than a dozen glaciers, many former tidewater and calving glaciers, including Grand Plateau, Alsek, Bear, and Excelsior Glaciers that are rapidly retreating. Of 2,000 glaciers observed, 99% are retreating."[60] Icy Bay in Alaska is fed by three large glaciers—Guyot, Yahtse, and Tyndall Glaciers—all of which have experienced a loss in length and thickness and, consequently, a loss in area. Tyndall Glacier became separated from the retreating Guyot Glacier in the 1960s and has retreated 24 km(15 mi) since, averaging more than 500米(1,600英尺) per year.[63]

The Juneau Icefield Research Program has monitored outlet glaciers of the Juneau Icefield since 1946. On the west side of the ice field, the terminus of the Mendenhall Glacier, which flows into suburban Juneau, Alaska, has retreated 580米(1,900英尺). Of the nineteen glaciers of the Juneau Icefield, eighteen are retreating, and one, the Taku Glacier, is advancing. Eleven of the glaciers have retreated more than 1 km(0.62 mi) since 1948 — Antler Glacier, 5.4 km(3.4 mi); Gilkey Glacier, 3.5 km(2.2 mi); Norris Glacier, 1.1 km(0.68 mi) and Lemon Creek Glacier, 1.5 km(0.93 mi).[64] Taku Glacier has been advancing since at least 1890, when naturalist John Muir observed a large iceberg calving front. By 1948 the adjacent fjord had filled in, and the glacier no longer calved and was able to continue its advance. By 2005 the glacier was only 1.5 km(0.93 mi) from reaching Taku Point and blocking Taku Inlet. The advance of Taku Glacier averaged 17米(56英尺) per year between 1988 and 2005. The mass balance was very positive for the 1946–88 period fueling the advance; however, since 1988 the mass balance has been slightly negative, which should in the future slow the advance of this mighty glacier.[65]

Long-term mass balance records from Lemon Creek Glacier in Alaska show slightly declining mass balance with time.[66] The mean annual balance for this glacier was −0.23米(0.75英尺) each year during the period of 1957 to 1976. Mean annual balance has been increasingly negatively averaging −1.04米(3.4英尺) per year from 1990 to 2005. Repeat glacier altimetry, or altitude measuring, for 67 Alaska glaciers find rates of thinning have increased by more than a factor of two when comparing the periods from 1950 to 1995 (0.7米(2.3英尺) per year) and 1995 to 2001 (1.8米(5.9英尺) per year).[67] This is a systemic trend with loss in mass equating to loss in thickness, which leads to increasing retreat—the glaciers are not only retreating, but they are also becoming much thinner. In Denali National Park, all glaciers monitored are retreating, with an average retreat of 20米(66英尺) per year. The terminus of the Toklat Glacier has been retreating 26米(85英尺) per year and the Muldrow Glacier has thinned 20米(66英尺) since 1979.[68] Well documented in Alaska are surging glaciers that have been known to rapidly advance, even as much as 100米(330英尺) per day. Variegated, Black Rapids, Muldrow, Susitna and Yanert are examples of surging glaciers in Alaska that have made rapid advances in the past. These glaciers are all retreating overall, punctuated by short periods of advance.

Southern hemisphere

編輯

Andes and Tierra del Fuego

編輯
 
Retreat of San Rafael Glacier from 1990 to 2000. San Quintín Glacier is shown in the background

A large region of population surrounding the central and southern Andes of Argentina and Chile reside in arid areas that are dependent on water supplies from melting glaciers. The water from the glaciers also supplies rivers that have in some cases been dammed for hydroelectric power. Some researchers believe that by 2030, many of the large ice caps on the highest Andes will be gone if current climate trends continue. In Patagonia on the southern tip of the continent, the large ice caps have retreated a 1 km(0.62 mi) since the early 1990s and 10 km(6.2 mi) since the late 19th century. It has also been observed that Patagonian glaciers are receding at a faster rate than in any other world region.[69] The Northern Patagonian Ice Field lost 93 km2(36 sq mi) of glacier area during the years between 1945 and 1975, and 174 km2(67 sq mi) from 1975 to 1996, which indicates that the rate of retreat is increasing. This represents a loss of 8% of the ice field, with all glaciers experiencing significant retreat. The Southern Patagonian Ice Field has exhibited a general trend of retreat on 42 glaciers, while four glaciers were in equilibrium and two advanced during the years between 1944 and 1986. The largest retreat was on O'Higgins Glacier, which during the period 1896–1995 retreated 14.6 km(9.1 mi). The Perito Moreno Glacier is 30 km(19 mi) long and is a major outflow glacier of the Patagonian ice sheet, as well as the most visited glacier in Patagonia. Perito Moreno Glacier is in equilibrium, but has undergone frequent oscillations in the period 1947–96, with a net gain of 4.1 km(2.5 mi). This glacier has advanced since 1947, and has been essentially stable since 1992. Perito Moreno Glacier is one of three glaciers in Patagonia known to have advanced, compared to several hundred others in retreat.[70] The two major glaciers of the Southern Patagonia Icefield to the north of Moreno, Upsala and Viedma Glacier have retreated 4.6 km(2.9 mi) in 21 years and 1 km(0.62 mi) in 13 years respectively.[71] In the Aconcagua River Basin, glacier retreat has resulted in a 20% loss in glacier area, declining from 151 km2(58 sq mi) to 121 km2(47 sq mi).[72] The Marinelli Glacier in Tierra del Fuego has been in retreat since at least 1960 through 2008.

Oceania

編輯
 
These glaciers in New Zealand have continued to retreat rapidly in recent years. Notice the larger terminal lakes, the retreat of the white ice (ice free of moraine cover), and the higher moraine walls due to ice thinning. Photo.

In New Zealand, mountain glaciers have been in general retreat since 1890, with an acceleration since 1920. Most have measurably thinned and reduced in size, and the snow accumulation zones have risen in elevation as the 20th century progressed. Between 1971–75 Ivory Glacier receded 30米(98英尺) from the glacial terminus, and about 26% of its surface area was lost. Since 1980 numerous small glacial lakes formed behind the new terminal moraines of several of these glaciers. Glaciers such as Classen, Godley and Douglas now all have new glacial lakes below their terminal locations due to the glacial retreat over the past 20 years. Satellite imagery indicates that these lakes are continuing to expand. There has been significant and ongoing ice volume losses on the largest New Zealand glaciers, including the Tasman, Ivory, Classen, Mueller, Maud, Hooker, Grey, Godley, Ramsay, Murchison, Therma, Volta and Douglas Glaciers. The retreat of these glaciers has been marked by expanding proglacial lakes and terminus region thinning. The loss in Southern Alps total ice volume from 1976–2014 is 34 percent of the total.[73]

Several glaciers, notably the much-visited Fox and Franz Josef Glaciers on New Zealand's West Coast, have periodically advanced, especially during the 1990s, but the scale of these advances is small when compared to 20th-century retreat. Both are more than 2.5 km(1.6 mi) shorter than a century ago. These large, rapidly flowing glaciers situated on steep slopes have been very reactive to small mass-balance changes. A few years of conditions favorable to glacier advance, such as more westerly winds and a resulting increase in snowfall, are rapidly echoed in a corresponding advance, followed by equally rapid retreat when those favorable conditions end.[74] The glaciers that have been advancing in a few locations in New Zealand have been doing so due to transient local weather conditions, which have brought more precipitation and cloudier, cooler summers since 2002.[75]

相關條目

編輯
  • 世界冰川列表
  • 全球暖化效應
  • 極端冰調查
  • 後冰川的反彈

參考資料

編輯
  1. ^ Intergovernmental Panel on Climate Change. Graph of 20 glaciers in retreat worldwide. Climate Change 2001 (Working Group I: The Scientific Basis). [February 14, 2015]. 
  2. ^ Thomas Mölg. Worldwide glacier retreat. RealClimate. [February 14, 2015]. 
  3. ^ Intergovernmental panel on climate change. 2.2.5.4 Mountain glaciers. Climate Change 2001 (Working Group I: The Scientific Basis. [February 14, 2015]. (原始內容存檔於September 1, 2014). 
  4. ^ National Snow and Ice Data Center. Global glacier recession. GLIMS Data at NSIDC. [February 14, 2015]. (原始內容存檔於July 5, 2008). 
  5. ^ Mote, Philip W.; Kaser, Georg. The Shrinking Glaciers of Kilimanjaro: Can Global Warming Be Blamed?. American Scientist. 2007, 95 (4): 318–325. doi:10.1511/2007.66.318. 
  6. ^ Alex S. Gardner; Geir Moholdt; J. Graham Cogley; Bert Wouters; Anthony A. Arendt; John Wahr; Etienne Berthier; Regine Hock; W. Tad Pfeffer; Georg Kaser; Stefan R. M. Ligtenberg; Tobias Bolch; Martin J. Sharp; Jon Ove Hagen; Michiel R. van den Broeke; Frank Paul. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science. May 17, 2013, 340 (6134): 852–857. Bibcode:2013Sci...340..852G. PMID 23687045. doi:10.1126/science.1234532. 
  7. ^ Hubbard, Bryn; Neil F. Glasser. Field Techniques in Glaciology and Glacial Geomorphology. Wiley. May 20, 2005: 179–198. ISBN 978-0470844274. 
  8. ^ Pelto, M.S. Forecasting temperate alpine glacier survival from accumulation zone observations (PDF). The Cryosphere. 2010, 4 (1): 67–75. doi:10.5194/tc-4-67-2010. 
  9. ^ Clark, Peter U. Abrupt Climate Change: Final Report, Synthesis and Assessment Product. DIANE Publishing Company. September 28, 2009: 39–45. ISBN 9781437915693. 
  10. ^ Pelto, Mauri S. The Disequilibrium of North Cascade, Washington Glaciers 1984–2004. In Hydrologic Processes. [February 17, 2015]. 
  11. ^ Schultz, Jürgen. The Ecozones of the World: The Ecological Divisions of the Geosphere 2. Springer. September 7, 2005. ISBN 978-3540200147. 
  12. ^ Hensen, Robert. The Rough Guide to Climate Change. DK. October 30, 2006. ISBN 9781843537113. 
  13. ^ White, Christopher. The Melting World: A Journey Across America's Vanishing Glaciers. St. Martin's Press. September 3, 2013: 133. ISBN 978-0312546281. 
  14. ^ Fort, Monique. Landscapes and Landforms in France. Springer Netherlands. 2014: 172. ISBN 9789400770218. 
  15. ^ Pelto, Mauri. Mer de Glace, Glacier Retreat-A Receding Sea. From a Glacier's Perspective. April 4, 2010 [March 1, 2015]. 
  16. ^ Malinverni, Eva; Croci, Claudia; Sgroi, Fabrizio. Glacier Monitoring by Remote Sensing and GIS Techniques in Open Source Environment (pdf). EARSeL eProceedings. February 2008 [April 18, 2015]. 
  17. ^ Cannone, Nicoletta; Diolaiuti, G; Guglielmin, M; Smiraglia, C. Accelerating Climate Change Impacts on Alpine Glacier Forefield Ecosystems in the European Alps (PDF). Ecological Applications. 2008, 18 (3): 637–648 [April 18, 2015]. PMID 18488623. doi:10.1890/07-1188.1. (原始內容 (PDF)存檔於April 18, 2015). 
  18. ^ Diolaiuti, Guglielmina; Maragno, D.; d'Agata, C.; Smiraglia, C.; Bocchiola, D. Glacier retreat and climate change: Documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosdè Piazzi glaciers (Lombardy Alps, Italy). Progress in Physical Geography. April 2011, 35 (2): 161–182 [April 18, 2015]. doi:10.1177/0309133311399494. 
  19. ^ Glaciers Online. Swiss Education. [April 18, 2015]. 
  20. ^ Wikland, Maria; Holmlund, Per. Swedish Glacier front monitoring program – compilation of data from 1990 to 2001 (pdf). Stockholm: Tarfala Research Station, University of Stockholm: 37–40. 2002 [June 28, 2015]. 
  21. ^ Nesje, Atle; Bakke, Jostein; Dahl, Svein Olaf; Lie, Øyvind; Matthews, John A. Norwegian mountain glaciers in the past, present and future (pdf). Global and Planetary Change. 2008, 60: 10–27. Bibcode:2008GPC....60...10N. doi:10.1016/j.gloplacha.2006.08.004. 
  22. ^ Engabreen. Norwegian Water Resources and Energy Directorate. September 16, 2014 [May 25, 2015]. 
  23. ^ Hardangerjøkulen. Norwegian Water Resources and Energy Directorate. September 16, 2014 [May 25, 2015]. (原始內容存檔於May 26, 2015). 
  24. ^ Nesje, Atle. Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature. The Holocene. December 2005, 15 (8): 1245–1252 [May 25, 2015]. doi:10.1191/0959683605hl897rr. 
  25. ^ Nussbaumer, Samuel U.; Nesje, Atle; Zumbühl, Heinz J. Historical glacier fluctuations of Jostedalsbreen and Folgefonna (southern Norway) reassessed by new pictorial and written evidence. The Holocene (Sage). May 2011, 21 (3): 455–471 [May 25, 2015]. doi:10.1177/0959683610385728. 
  26. ^ J. Chuecaia; et al. Recent evolution (1981–2005) of the Maladeta glaciers, Pyrenees, Spain: extent and volume losses and their relation with climatic and topographic factors. Journal of Glaciology. 2007, 53 (183): 547–557. Bibcode:2007JGlac..53..547C. doi:10.3189/002214307784409342. CS1 maint: Explicit use of et al. (link)
  27. ^ Serrano, E., E. Martinez and F. Lampre. Desaparición de Glaciares Pirenaicos Españoles. 2004 [July 1, 2015]. CS1 maint: Multiple names: authors list (link)
  28. ^ Painter, Thomas; Flanner, Mark; Kaser, Georg; Marzeion, Ben; VanCuren, Richard; Abdalati, Waleed. End of the Little Ice Age in the Alps forced by industrial black carbon. Proceedings of the National Academy of Sciences. September 17, 2013, 110 (88): 15216–15221 [July 1, 2015]. doi:10.1073/.pnas.1302570110. 
  29. ^ Surazakov, A.B.; Aizem, V.B.; Aizem, E.M.; Nikitin, S.A. Glacier Changes in the Siberian Altai Mountains, Ob river basin, (1952–2006) estimated with high resolution imagery (PDF). Environmental Research Letters (IOP): 045017. [July 6, 2015]. Bibcode:2007ERL.....2d5017S. doi:10.1088/1748-9326/2/4/045017. 
  30. ^ Dyurgerov, Mark B.; Meier, Mark F. Glaciers and the Changing Earth System: A 2004 Snapshot (PDF). University of Colorado. 2005 [July 6, 2015]. 
  31. ^ Ananicheva, M.D.; Krenke, A.N.; Barry, R.G. The Northeast Asia mountain glaciers in the near future by AOGCM scenarios (PDF). The Cryosphere. October 6, 2010, 4: 435–445 [July 21, 2015]. Bibcode:2010TCry....4..435A. doi:10.5194/tc-4-435-2010. 
  32. ^ Jones, Vivienne; Solomina, Olga. The geography of Kamchatka. Global and Planetary Change. June 6, 2015, 134 (132): 3–9 [July 21, 2015]. Bibcode:2015GPC...134....3J. doi:10.1016/j.gloplacha.2015.06.003. 
  33. ^ Himalayas Facts. Nature. February 11, 2011 [August 26, 2015]. 
  34. ^ Laghari, Javaid. Climate change: Melting glaciers bring energy uncertainty. Nature. November 11, 2013 [November 15, 2015]. 
  35. ^ Narrowing the Knowledge Gap on Glaciers in High Mountain Asia. International Symposium on Glaciology in High Mountain Asia. International Centre for Integrated Mountain Development. March 9, 2015 [August 26, 2015]. 
  36. ^ Haritashya, Umesh K.; Bishop, Michael P.; Shroder, John F.; Bush, Andrew B. G.; Bulley, Henry N. N. Space-based assessment of glacier fluctuations in the Wakhan Pamir, Afghanistan (PDF). Climate Change. 2009, 94 (1–2): 5–18. doi:10.1007/s10584-009-9555-9. 
  37. ^ Pelto, Mauri. Zemestan Glacier, Afghanistan Retreats. American Geophysical UNion. December 23, 2009 [November 15, 2015]. 
  38. ^ Sandeep Chamling Rai; Trishna Gurung; et alia. An Overview of Glaciers, Glacier Retreat and Subsequent Impacts in Nepal, India and China (PDF). WWF Nepal Program. [November 15, 2015]. 
  39. ^ Bajracharya, Mool. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal (pdf). International Centre for Integrated Mountain Development. [January 10, 2010]. 
  40. ^ Naithani, Ajay K.; Nainwal, H. C.; Sati, K. K.; Prasad, C. Geomorphological evidences of retreat of the Gangotri Glacier and its characteristics (PDF). Current Science. 2001, 80 (1): 87–94 [November 15, 2015]. 
  41. ^ Retreat of the Gangotri Glacier. NASA Earth Observatory. June 23, 2004 [November 15, 2015]. 
  42. ^ Raina, V. K. Himalayan Glaciers A State-of-Art Review of Glacial Studies, Glacial Retreat and Climate Change (PDF). Ministry of Environment and Forests. 2010 [November 15, 2015]. 
  43. ^ Anthwal, Ashish; Joshi, Varun; Sharma, Archana; Anthwal, Smriti. Retreat of Himalayan Glaciers – Indicator of Climate Change (PDF). Nature and Science. 2006, 4 (4): 53–59 [November 16, 2015]. 
  44. ^ Hewitt, Kenneth. [0332:TKAGEA2.0.CO;2 The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya]. Mountain Research and Development (International Mountain Society). 2006, 25 (4): 332–340 [November 16, 2015]. doi:10.1659/0276-4741(2005)025[0332:tkagea]2.0.co;2. 
  45. ^ Glacial Lakes and Glacial Lake Outburst Floods in Nepal (pdf). International Centre for Integrated Mountain Development: 31. 2011 [November 22, 2015]. 
  46. ^ Qader Mirza, M. Monirul. Climate Change and Water Resources in South Asia. Taylor & Francis Ltd. July 13, 2005: 143 [November 22, 2015]. ISBN 978-0203020777. 
  47. ^ United Nations Environment Programme. Global Warming Triggers Glacial Lakes Flood Threat – April 16, 2002. UNEP News Release 2002/20. [November 22, 2015]. 
  48. ^ T. E. Khromova, M. B. Dyurgerov and R. G. Barry. Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery (Abstract). American Geophysical Union. 2003, 30 (16): 1863. Bibcode:2003GeoRL..30.1863K. doi:10.1029/2003gl017233. 
  49. ^ Kirby, Alex. Kazakhstan's glaciers 'melting fast'. BBC News. September 4, 2003. 
  50. ^ Kayumov, A. Glaciers Resources of Tajikistan in Condition of the Climate Change (pdf). State Agency for Hydrometeorology of Committee for Environmental Protection under the Government of the Republic of Tajikistan. [January 31, 2016]. 
  51. ^ Novikov, V. Tajikistan 2002, State of the Environment Report. Climate Change. Research Laboratory for Nature Protection (Tajikistan). [January 31, 2016]. 
  52. ^ Huegel, Tony. Sierra Nevada Byways: 51 of the Sierra Nevada's Best Backcountry Drives (Backcountry Byways). Wilderness Press. 2008: 2 [2011-10-15]. ISBN 0-89997-473-2. 
  53. ^ Castor, Stephen B.; Keith G, Papke, Richard O. Meeuwig. Proceedings of the 39th Forum on the Geology of Industrial Minerals, Nevada. Nevada Bureau of Mines and Geology. 2004: 192 [2011-10-15]. CS1 maint: Multiple names: authors list (link)
  54. ^ Pelto, Mauri S. Recent Global Glacier Retreat Overview. [2011-10-15]. 
  55. ^ Mauri S. Pelto; Cliff Hedlund. Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A. Journal of Glaciology. 2001, 47 (158): 497–506. Bibcode:2001JGlac..47..497P. doi:10.3189/172756501781832098. 
  56. ^ Mauri S. Pelto. North Cascade Glacier Terminus Behavior. Nichols College. [August 7, 2016]. 
  57. ^ U.S. Geological Survey. Glacier Monitoring in Glacier National Park. [April 25, 2003]. (原始內容存檔於February 18, 2013). 
  58. ^ U.S. Geological Survey, U.S. Department of the Interior. Glacier Retreat in Glacier National Park, Montana. [April 25, 2003]. 
  59. ^ Wyoming Water Resources Data System Library. Glacial Icemelt in the Wind River Range, Wyoming. July 11, 1990. 
  60. ^ 60.0 60.1 引用錯誤:沒有為名為pelto5的參考文獻提供內容
  61. ^ Canadian Cryospheric Information Network. Past Variability of Canadian Glaciers. [February 14, 2006]. 
  62. ^ J. Koch, B. Menounos & J. Clague. Glacier change in Garibaldi Provincial Park, southern Coast Mountains, British Columbia, since the Little Ice Age. Global and Planetary Change. 66. 2009,. (3–4) 161–178 (3–4): 161–178. Bibcode:2009GPC....66..161K. doi:10.1016/j.gloplacha.2008.11.006. 
  63. ^ Bruce F. Molnia. Fast-flow advance and parallel rapid retreat of non-surging tidewater glaciers in Icy Bay and Yakutat Bay, Alaska 1888–2003. [September 6, 2003]. 
  64. ^ Mauri S. Pelto & Maynard M. Miller. Terminus Behavior of Juneau Icefield Glaciers 1948–2005. North Cascade Glacier Climate Project. [August 7, 2016]. 
  65. ^ Mauri S. Pelto et al. The equilibrium flow and mass balance of the Taku Glacier, Alaska 1950–2006 (PDF). The Cryosphere. 2008, 2 (2): 147–157. doi:10.5194/tc-2-147-2008. 
  66. ^ Maynard M. Miller; Mauri S. Pelto. Mass Balance Measurements of the Lemon Creek Glacier, Juneau Icefield, Alaska, 1953–2005. [August 7, 2016]. (原始內容存檔於August 13, 2016).  已忽略未知參數|df= (幫助)
  67. ^ Anthony A. Arendt; et al. Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level. Science. July 19, 2002, 297 (5580): 382–386. Bibcode:2002Sci...297..382A. PMID 12130781. doi:10.1126/science.1072497. 
  68. ^ Guy W. Adema; et al. Melting Denali: Effects of Climate Change on the Glaciers of Denali National Park and Preserve (PDF). [September 9, 2007]. 
  69. ^ Patagonian ice in rapid retreat. BBC News. April 27, 2000. 
  70. ^ Skvarca, P. & R. Naruse. Dynamic behavior of glaciar Perito Moreno, Southern Patagonia. Annals of Glaciology. 1997, 24 (1): 268–271. Bibcode:1996AnGla..24..268S. doi:10.1017/S0260305500012283. 
    Casassa, G., H. Brecher, A. Rivera and M. Aniya. A century-long record of glacier O'Higgins, Patagonia. Annals of Glaciology. 1997, 24 (1): 106–110. doi:10.1017/S0260305500012015. 
  71. ^ EORC. Huge glaciers retreat on a large scale in Patagonia, South America. Earth Observation research Center. July 15, 2005 [June 13, 2009]. 
  72. ^ Brown, F., Rivera, A., Acuna, C.; Rivera; Acuña. Recent glaciers variations at the Aconcagua Basin, central Chilean Andes (PDF). Annals of Glaciology. 2008, 48 (2): 43–48. Bibcode:2008AnGla..48...43B. doi:10.3189/172756408784700572. 
  73. ^ Salinger, Jim; Fitzharris, Blair; Chinn, Trevor, New Zealand's Southern Alps have lost a third of their ice, The Conversation, July 29, 2014 [February 18, 2015] 
  74. ^ United States Department of the Interior. Glaciers of New Zealand. May 4, 2000. 
  75. ^ Goodenough, Patrick. A Glacier Grows, Undeterred by Heated Kyoto Debate. Cybercast News Service. July 7, 2008. 

[[Category:19世纪]] [[Category:20世纪]] [[Category:21世纪]] [[Category:氣候史]] [[Category:冰川学]] [[Category:山地生態學]]