1 − 20
1 |
|
2 |
-i·(1+i)2
|
3 |
3
|
4 |
-1·(1+i)4
|
5 |
(2+i)·(2-i)
|
6 |
-i·(1+i)2·3
|
7 |
7
|
8 |
i·(1+i)6
|
9 |
32
|
10 |
-i·(1+i)2·(2+i)·(2-i)
|
11 |
11
|
12 |
-1·(1+i)4·3
|
13 |
(3+2i)·(3-2i)
|
14 |
-i·(1+i)2·7
|
15 |
(2+i)·(2-i)·3
|
16 |
(1+i)8
|
17 |
(4+i)·(4-i)
|
18 |
-i·(1+i)2·32
|
19 |
19
|
20 |
-1·(1+i)4·(2+i)·(2-i)
|
|
21 − 40
21 |
3·7
|
22 |
-i·(1+i)2·11
|
23 |
23
|
24 |
i·(1+i)6·3
|
25 |
(2+i)2·(2-i)2
|
26 |
-i·(1+i)2·(3+2i)·(3-2i)
|
27 |
33
|
28 |
-1·(1+i)4·7
|
29 |
(5+2i)·(5-2i)
|
30 |
-i·(1+i)2·(2+i)·(2-i)·3
|
31 |
31
|
32 |
-i·(1+i)10
|
33 |
3·11
|
34 |
-i·(1+i)2·(4+i)·(4-i)
|
35 |
(2+i)·(2-i)·7
|
36 |
-1·(1+i)4·32
|
37 |
(6+i)·(6-i)
|
38 |
-i·(1+i)2·19
|
39 |
3·(3+2i)·(3-2i)
|
40 |
i·(1+i)6·(2+i)·(2-i)
|
|
41 − 60
41 |
(5+4i)·(5-4i)
|
42 |
-i·(1+i)2·3·7
|
43 |
43
|
44 |
-1·(1+i)4·11
|
45 |
(2+i)·(2-i)·32
|
46 |
-i·(1+i)2·23
|
47 |
47
|
48 |
(1+i)8·3
|
49 |
72
|
50 |
-i·(1+i)2·(2+i)2·(2-i)2
|
51 |
3·(4+i)·(4-i)
|
52 |
-1·(1+i)4·(3+2i)·(3-2i)
|
53 |
(7+2i)·(7-2i)
|
54 |
-i·(1+i)2·33
|
55 |
(2+i)·(2-i)·11
|
56 |
i·(1+i)6·7
|
57 |
3·19
|
58 |
(1+i)2·(5+2i)·(-2-5i)
|
59 |
59
|
60 |
-1·(1+i)4·(2+i)·(2-i)·3
|
|
61 − 80
61 |
(6+5i)·(6-5i)
|
62 |
-i·(1+i)2·31
|
63 |
32·7
|
64 |
-1·(1+i)12
|
65 |
(2+i)·(2-i)·(3+2i)·(3-2i)
|
66 |
-i·(1+i)2·3·11
|
67 |
67
|
68 |
-1·(1+i)4·(4+i)·(4-i)
|
69 |
3·23
|
70 |
-i·(1+i)2·(2+i)·(2-i)·7
|
71 |
71
|
72 |
i·(1+i)6·32
|
73 |
(8+3i)·(8-3i)
|
74 |
-1·(1+i)2·(1+6i)·(6+i)
|
75 |
(2+i)2·(2-i)2·3
|
76 |
-1·(1+i)4·19
|
77 |
7·11
|
78 |
-i·(1+i)2·3·(3+2i)·(3-2i)
|
79 |
79
|
80 |
(1+i)8·(2+i)·(2-i)
|
|
81 − 100
81 |
34
|
82 |
-i·(1+i)2·(5+4i)·(5-4i)
|
83 |
83
|
84 |
-1·(1+i)4·3·7
|
85 |
(2+i)·(2-i)·(4+i)·(4-i)
|
86 |
-i·(1+i)2·43
|
87 |
3·(5+2i)·(5-2i)
|
88 |
i·(1+i)6·11
|
89 |
(8+5i)·(8-5i)
|
90 |
-i·(1+i)2·(2+i)·(2-i)·32
|
91 |
(3+2i)·(3-2i)·7
|
92 |
-1·(1+i)4·23
|
93 |
3·31
|
94 |
-i·(1+i)2·47
|
95 |
(2+i)·(2-i)·19
|
96 |
-i·(1+i)10·3
|
97 |
(9+4i)·(9-4i)
|
98 |
-i·(1+i)2·72
|
99 |
32·11
|
100 |
-1·(1+i)4·(2+i)2·(2-i)2
|
|