脂滴(英語:Lipid droplets、Lipid bodies或Adiposomes),[1]是富含脂質細胞器,可調節中性脂質的儲存和水解,主要存在於脂肪組織中。[2]它們還充當膽固醇甘油酯的儲庫,用於膜的形成和維持。脂滴存在於所有真核生物中,並在哺乳動物的脂肪細胞中儲存了很大一部分脂質。最初,這些脂滴被認為僅作為脂肪庫,但自從1990年代在脂滴外殼中發現了調節脂滴動態和脂質代謝蛋白質後,脂滴被視為高度動態的細胞器,並在調節細胞內脂質儲存和脂質代謝方面起著非常重要的作用。脂滴在脂質和膽固醇儲存之外的作用漸漸開始被闡明,包括通過類花生酸的合成和代謝與炎症反應以及肥胖癌症[3][4]動脈粥樣硬化[5]等代謝紊亂的密切關聯。在非脂肪細胞中,已知脂滴通過以中性三酸甘油酯(TAGs)的形式儲存脂肪酸,在防止脂肪毒性方面發揮作用,其中三酸甘油酯由三個與甘油結合的脂肪酸組成。另外,脂肪酸可以轉化為脂質中間體,如甘油二酯(DAGs)、神經醯胺和脂醯輔酶A。這些脂質中間體會損害胰島素信號,這被稱為脂質誘導的胰島素抵抗和脂肪毒性。[6]脂滴也可作為蛋白質結合和降解的平台。最後,已知脂滴會被C型肝炎病毒登革熱病毒沙眼衣原體病原體利用。[7][8]

結構

編輯

脂滴由中性脂質核心組成,主要由三酸甘油酯和被磷脂單層包圍的膽固醇酯組成。[2]脂滴的表面被一些參與調節脂質代謝的蛋白質所裝飾。[2]第一個也是最典型的脂滴外殼蛋白質家族是圍脂滴蛋白家族(perilipin protein family),由五種蛋白質組成。這五種蛋白質包括圍脂滴蛋白1(PLIN1)、圍脂滴蛋白2(PLIN2/ADRP)、[9]圍脂滴蛋白3(PLIN3/TIP47)、圍脂滴蛋白4(PLIN4/S3-12)和圍脂滴蛋白5(PLIN5/OXPAT/LSDP5/MLDP)。[10][11][12]蛋白質組學研究表明了許多其他蛋白質家族與脂質表面的關聯,包括參與膜囊泡運輸、囊泡對接、胞吞作用胞吐作用的蛋白質。[13]對脂滴的脂質成分的分析揭示了多種磷脂種類的存在,[14]其中磷脂醯膽鹼磷脂醯乙醇胺的含量最多,其次是磷脂醯肌醇

脂滴的大小變化很大,從20nm至40nm甚至100um不等。[15]在脂肪細胞中,脂質體往往較大,它們可能構成細胞的大部分,而在其他細胞中,它們可能僅在特定條件下被誘導並且體積小得多。

形成

編輯

脂滴從內質網膜上萌芽。最初,晶狀體通過在其磷脂雙分子層的兩層之間積累三酸甘油酯形成。新生的脂滴可能通過脂肪酸的擴散、甾醇的胞吞作用或藉助SNARE蛋白融合較小的脂滴而生長。[15]磷脂的不對稱積累促進了脂滴的出芽,並降低了胞質溶膠表面張力[16]還觀察到脂滴是由現有脂滴裂變產生的,儘管這被認為不如從頭形成那麼常見。[17]

 
用無標記活細胞成像技術觀察脂滴

內質網中脂滴的形成始於要運輸的中性脂質的合成。從甘油二酯製造三酸甘油酯(通過添加脂肪醯基鏈)由DGAT蛋白催化,儘管這些蛋白和其他蛋白的需求程度取決於細胞類型。[18]無論是DGAT1或DGAT2都不是三酸甘油酯合成或液滴形成所必需的,儘管缺乏這兩者的哺乳動物細胞不能形成脂滴,並且三酸甘油酯的合成會嚴重受阻。DGAT1似乎更喜歡外源性脂肪酸底物,不是生命所必需的;DGAT2似乎更喜歡內源性合成的脂肪酸,是生命所必需的。[17]

在非脂肪細胞中,脂質儲存、脂滴合成和脂滴生長可由各種刺激誘導,包括生長因子、長鏈不飽和脂肪酸(包括油酸花生四烯酸)、氧化應激和炎症刺激物如細菌脂多糖、各種微生物病原體、血小板活化因子類花生酸細胞因子[19]

一個例子是作為不飽和脂肪酸衍生物內源性大麻素,它主要被認為是從細胞膜中的磷脂前體「按需要」合成的,但也可能在細胞內脂滴中合成和儲存,並在適當條件下從這些儲存中釋放出來。[20]

使用無標記活細胞成像,可以觀察活的和無標記的脂滴的形成。

圖像

編輯
 
密葉被蒴苔中的油體,一種多葉地錢

參見

編輯

參考文獻

編輯
  1. ^ Martin, Sally; Parton, Robert G. Lipid droplets: a unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology. 8 March 2006, 7 (5): 373–378. PMID 16550215. S2CID 34926182. doi:10.1038/nrm1912. 
  2. ^ 2.0 2.1 2.2 Mobilization and cellular uptake of stored fats and triacylglycerol (with Animation). [2023-01-26]. (原始內容存檔於2023-02-09). 
  3. ^ Bozza, PT; Viola, JP. Lipid droplets in inflammation, cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids. Apr–Jun 2010, 82 (4–6): 243–50. PMID 20206487. doi:10.1016/j.plefa.2010.02.005. 
  4. ^ Melo, Rossana C. N.; Dvorak, Ann M.; Chitnis, Chetan E. Lipid Body–Phagosome Interaction in Macrophages during Infectious Diseases: Host Defense or Pathogen Survival Strategy?. PLOS Pathogens. 5 July 2012, 8 (7): e1002729. PMC 3390411 . PMID 22792061. doi:10.1371/journal.ppat.1002729. 
  5. ^ Greenberg, Andrew S.; Coleman, Rosalind A.; Kraemer, Fredric B.; McManaman, James L.; Obin, Martin S.; Puri, Vishwajeet; Yan, Qing-Wu; Miyoshi, Hideaki; Mashek, Douglas G. The role of lipid droplets in metabolic disease in rodents and humans. Journal of Clinical Investigation. 1 June 2011, 121 (6): 2102–2110. PMC 3104768 . PMID 21633178. doi:10.1172/JCI46069. 
  6. ^ Bosma, M; Kersten, S; Hesselink, MKC; Schrauwen, P. Re-evaluating lipotoxic triggers in skeletal muscle: Relating intramyocellular lipid metabolism to insulin sensitivity (PDF). Prog Lipid Res. 2012, 51 (1): 36–49 [2023-01-27]. PMID 22120643. doi:10.1016/j.plipres.2011.11.003. (原始內容存檔 (PDF)於2023-01-27). 
  7. ^ Heaton, N.S.; Randall, G. Dengue virus-induced autophagy regulates lipid metabolism.. Cell Host Microbe. 2010, 8 (5): 422–32. PMC 3026642 . PMID 21075353. doi:10.1016/j.chom.2010.10.006. 
  8. ^ Suzuki, M.; Shinohara, Y.; Ohsaki, Y.; Fujimoto, T. Lipid droplets: size matters. Journal of Electron Microscopy. 15 August 2011, 60 (supplement 1): S101–S116. PMID 21844583. doi:10.1093/jmicro/dfr016. 
  9. ^ Bosma, M; Hesselink, MKC; Sparks, LM; Timmers, S; Ferraz, MJ; Mattijssen, F; van Beurden, D; Schaart, G; de Baets, MH; Verheyen, FK; Kersten, S; Schrauwen, P. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes. 2012, 61 (11): 2679–2690. PMC 3478528 . PMID 22807032. doi:10.2337/db11-1402. 
  10. ^ Martin, S; Parton, RG. Caveolin, cholesterol, and lipid bodies.. Seminars in Cell & Developmental Biology. Apr 2005, 16 (2): 163–74. PMID 15797827. doi:10.1016/j.semcdb.2005.01.007. 
  11. ^ Brasaemle, D. L. Thematic review series: Adipocyte Biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. The Journal of Lipid Research. 25 August 2007, 48 (12): 2547–2559. PMID 17878492. doi:10.1194/jlr.R700014-JLR200 . 
  12. ^ Kimmel, AR; Brasaemle, DL; McAndrews-Hill, M; Sztalryd, C; Londos, C. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins.. Journal of Lipid Research. Mar 2010, 51 (3): 468–71. PMC 2817576 . PMID 19638644. doi:10.1194/jlr.R000034. 
  13. ^ Goodman, JM. The gregarious lipid droplet.. The Journal of Biological Chemistry. Oct 17, 2008, 283 (42): 28005–9. PMC 2568941 . PMID 18611863. doi:10.1074/jbc.R800042200 . 
  14. ^ Bartz, R.; Li, W.-H.; Venables, B.; Zehmer, J. K.; Roth, M. R.; Welti, R.; Anderson, R. G. W.; Liu, P.; Chapman, K. D. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. The Journal of Lipid Research. 22 January 2007, 48 (4): 837–847. PMID 17210984. doi:10.1194/jlr.M600413-JLR200 . 
  15. ^ 15.0 15.1 Guo Y, Cordes KR, Farese RV, Walther TC. Lipid droplets at a glance.. Journal of Cell Science. Mar 15, 2009, 122 (Pt 6): 749–52. PMC 2714424 . PMID 19261844. doi:10.1242/jcs.037630. 
  16. ^ Chorlay, Aymeric; Abdou Rachid Thiam. An Asymmetry in Monolayer Tension Regulates Lipid Droplet Budding Direction. Biophysical Journal. February 2018, 114 (3): 631–640. PMC 5985028 . PMID 29414709. doi:10.1016/j.bpj.2017.12.014 . 
  17. ^ 17.0 17.1 Wilfling, Florian; Haas, J.; Walther, T.; Farese, R. Lipid droplet biogenesis. Current Opinion in Cell Biology. August 2014, 29: 39–45. PMC 4526149 . PMID 24736091. doi:10.1016/j.ceb.2014.03.008. 
  18. ^ Harris, Charles; et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. Journal of Lipid Research. April 2011, 52 (4): 657–667. PMC 3284159 . PMID 21317108. doi:10.1194/jlr.M013003. 
  19. ^ Melo, R. C. N.; D'Avila, H.; Wan, H.-C.; Bozza, P. T.; Dvorak, A. M.; Weller, P. F. Lipid Bodies in Inflammatory Cells: Structure, Function, and Current Imaging Techniques. Journal of Histochemistry & Cytochemistry. 23 March 2011, 59 (5): 540–556. PMC 3201176 . PMID 21430261. doi:10.1369/0022155411404073. 
  20. ^ Ayakannu, Thangesweran; Taylor, Anthony H.; Marczylo, Timothy H.; Willets, Jonathon M.; Konje, Justin C. The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers. International Journal of Endocrinology. 2013, 2013: 259676. ISSN 1687-8337. PMC 3863507 . PMID 24369462. doi:10.1155/2013/259676 . 

外部連結

編輯