截對角偏方面體
在幾何學中,截對角偏方面體是一種多面體,可以透過將偏方面體截去上下兩個頂點構成,並具備二面體群對稱性[1]。它的命名方式是根據上下兩個面的形狀而命名的,例如:正十二面體可以視為是截對角正五方偏方面體,它的上下兩個面都是正五邊形,其他的面也是五邊形;[2]:251截對角四方偏方面體的上下兩個面則是正方形或四邊形,其他的面則是五邊形,依此類推。部分的截對角偏方面體可以作為化學的分子籠結構。[3]
類別 | 截對角偏方面體 |
---|---|
對偶多面體 | 雙錐反柱體 |
性質 | |
面 | |
邊 | |
頂點 | |
歐拉特徵數 | F=, E=, V= (χ=2) |
組成與佈局 | |
面的種類 | 2n個五邊形,2個n邊形 |
對稱性 | |
對稱群 | Dnd, [2+,2n], (2*n), 階數 4n |
旋轉對稱群 | Dn, [2,2n]+, (22n), 階數 2n |
特性 | |
凸 | |
註:為底面邊數 。 | |
形狀
编辑截對角偏方面體可以根據其底面邊數分類:
相關多面體
编辑截頂角偏方面體
编辑截頂角偏方面體又稱截一角偏方面體是指截去一個頂角的偏方面體。其對偶多面體為角錐反角柱。若截頂角偏方面體的底面邊數為n,則其會有2n+1個面、5n條邊和3n+1個頂點。
3 | 4 | 5 | 6 |
---|---|---|---|
截頂角三方偏方面體 |
截頂角四方偏方面體 |
截頂角五方偏方面體 |
截頂角六方偏方面體 |
參見
编辑參考文獻
编辑- ^ Katrina Biele, Yuan Feng, David Heras, Ahmed Tadde. Associating Finite Groups with Dessins d’Enfants (PDF). Purdue Research in Mathematics Experience (PRiME), Department of Mathematics, Purdue University. 2013 [2021-10-23]. (原始内容存档 (PDF)于2021-10-23).
- ^ 2.0 2.1 Alsina, C. and Nelsen, R.B. A Mathematical Space Odyssey: Solid Geometry in the 21st Century. Dolciani Mathematical Expositions. Mathematical Association of America. 2015. ISBN 9781614442165.
- ^ Seong-Pil Kang, Ju-Young Shin, Jong-Se Lim, Sangyong Lee. Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor. Chemical Engineering Science. 2014-09, 116: 817–823 [2021-10-07]. doi:10.1016/j.ces.2014.04.035. (原始内容存档于2018-06-09) (英语).
- ^ Weitzel, Hans, A further hypothesis on the polyhedron of A. Dürer's engraving Melencolia I, Historia Mathematica, 2004, 31 (1): 11–14, doi:10.1016/S0315-0860(03)00029-6
- ^ Ziegler, Günter M., Dürer's polyhedron: 5 theories that explain Melencolia's crazy cube, Alex Bellos's Adventures in Numberland, The Guardian, December 3, 2014 [2021-10-23], (原始内容存档于2020-11-11)
- ^ Diudea, M.V. and Nagy, C.L. Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics. Springer Netherlands. 2013. ISBN 9789400763715.
- ^ Wang, Dong and Cherkaev, Andrej and Osting, Braxton. Dynamics and stationary configurations of heterogeneous foams. PloS one (Public Library of Science). 2019, 14 (4): e0215836.
- ^ Jing Fan, Shin-Hyun Kim, Zi Chen, Shaobing Zhou, Esther Amstad, Tina Lin, David A. Weitz. Creation of Faceted Polyhedral Microgels from Compressed Emulsions (PDF). seas.harvard.edu. [2021-10-23]. (原始内容存档 (PDF)于2021-10-23).
- ^ 9.0 9.1 Wearie-Phelan Bubbles. steelpillow.com. [2019-10-05]. (原始内容存档于2019-08-06).
- ^ Șerban, D. A., Sărăndan, S., Negru, R., Belgiu, G., & Marşavina, L., A Parametric Study of the Mechanical Properties of Open-Cell Kelvin Structures, IOP Conference Series: Materials Science and Engineering 416 (1) (IOP Publishing), 2018, 416 (1): 012108