电阻
在电磁学里,电阻(英语:resistance)是一个物体对于电流通过的阻碍能力,以方程定义为:
;
假设一个物体具有均匀截面面积,则其电阻与电阻率、长度成正比,与截面面积成反比。
在国际单位制中,电阻的单位为欧姆(Ω,Ohm)。电阻的倒数为电导,单位为西门子(S)。
假设温度不变,则很多种物质会遵守欧姆定律,即这些物质所组成的物体,其电阻为常数,不跟电流或电压有关,一般称这些物质为“欧姆物质”;不遵守欧姆定律的物质为“非欧姆物质”。
导体与电阻器
编辑像电线一类的物体,具有低电阻,可以很有效率地传输电流,这类物体称为“导体”。通常导体是由像铜、金和银一类具有优等导电性质的金属制造,或者次等导电性质的铝。电阻器是具有特定电阻的电路元件。制备电阻器所使用的原料有很多种;应该使用哪种原料,要视指定的电阻、能量耗散、准确度和成本等因素而定。
直流电
编辑在物理学里,对于物质的微观层次电性质研究,会使用到的欧姆定律,以矢量方程表达为
- ;
在导体内任意两点g、h,定义电压为将单位电荷从点g移动到点h,电场力所需做的机械功[1]:
- ;
其中, 是电压, 是机械功, 是电荷量, 是微小线元素。
假设,沿着积分路径,电流密度 为均匀电流密度,并且平行于微小线元素:
- ;
其中, 是积分路径的单位矢量。
那么,可以得到电压:
- ;
其中, 是积分路径的径长。
假设导体具有均匀的电阻率,则通过导体的电流密度也是均匀的:
- ;
其中, 是导体的截面面积。
电压 简写为 。电压与电流成正比:
- 。
总结,电阻与电阻率的关系为
- 。
假设 ,则 ;将单位电荷从点g移动到点h,电场力需要作的机械功 。所以,点g的电势比点h的电势高,从点g到点h的电势差为 。从点g到点h,电压降是 ;从点h到点g,电压升是 。
交流电
编辑假设电线传导的电流是高频率交流电,则由于趋肤效应,电线的有效截面面积会减小。假设平行排列几条电线在一起,则由于邻近效应,每一条电线的有效电阻会大于单独电线的电阻。对于普通家用交流电,由于频率很低,这些效应非常微小,可以忽略这些效应。
测量电阻
编辑电阻计是测量电阻的仪器。由于探针电阻和接触电阻会造成电压降,简单电阻器不能准确地测量低电阻。高准确度测量工作必须使用四端点测量技术(four-terminal measurement technology)。
能带理论概述
编辑根据量子力学,束缚于原子内部的电子,其能量不能假定为任意数值,而只能占有某些固定能级,在这些能级之间的数值不可能是电子的能量。这些能级可以分为两组,一组称为导带,另一组称价带。导带的能级通常比较高一些。处于导带的电子可以自由地移动于物体内部。
在绝缘体和半导体中,原子之间会相互影响,使得导带和价带之间出现能隙,电子无法处于能隙。为了要产生电流,必须给予电子相当大的能量,协助电子从价带,跳过能隙,进入导带。因此,即使对这些物质施加很大的电压,产生的电流仍旧很小。
电阻种类
编辑各种不同材料的电阻
编辑金属
编辑金属是一群原子以晶格结构形成的晶体,每个原子都拥有一层(或多层)由电子组成的外壳。处于外壳的电子能脱离原子核的吸引力而到处流动,形成一片电子海,使得金属能够导电。当施加电势差(即电压)于金属两端时,因为感受到电场的影响,这些自由电子会呈加速运动。但是每当自由电子与晶格发生碰撞,其动能会遭受损失,以热能的形式将能量释放,所以,电子的平均移动速度是漂移速度,其方向与电场方向相反。由于漂移运动,会产生电流。在现实中,物质的原子排列不可能为完全规则,因此电子在流动途中会被不按规则排列的原子散射,这是电阻的来源。
给予一个具有完美晶格的金属晶体,移动于这晶体的电子,其运动等价于移动于自由空间、具有有效质量的电子的运动。所以,假设热运动足够微小,周期性结构没有偏差,则这晶体的电阻等于零。但是,真实晶体并不完美,时常会出现晶体缺陷,有些晶格点的原子可能不存在,可能会被杂质侵占。这样,晶格的周期性会被扰动,因而电子会被散射。另外,假设温度大于绝对零度,则处于晶格点的原子会发生热震动,因而出现热震动的粒子——声子——移动于晶体。温度越高,声子越多。声子会与电子发生碰撞,这过程称为晶格散射(lattice scattering)。主要由于上述两种散射,自由电子的流动会被阻碍,晶体因此具有有限电阻[2]。
半导体和绝缘体
编辑对于金属,费米能级的位置在导带区域内,因此金属内部会出现自由的传导电子。可是,对于半导体,费米能级的位置在能隙区域内。
本征半导体是未被掺杂的半导体,其费米能级大约为导带最低值与价带最高值的平均值。当温度为绝对零度时,本征半导体内部没有自由的传导电子,电阻为无穷大。当温度开始上升,高于绝对零度时,有些电子可能会获得能量而进入传导带中;假设施加外电场,则这些电子在获得外电场的能量后,会移动于金属内部,因而形成电流。
杂质半导体是经过掺杂的半导体。靠着捐赠电子给导带,或价带接受空穴,杂半导体内部的杂质原子能够增加电荷载子的密度,从而减低电阻。高度渗杂的半导体的导电性质类似金属。在非常高温度状况,热生成电荷载子的贡献会超过杂质原子的贡献;随着温度的增加,电阻会呈指数递减。
离子液体/电解质
编辑在电解质中,电流是由带电的离子的流动产生,因此液体的电阻很受盐的浓度所影响。譬如蒸馏水是绝缘体,但盐水就是很好的导电体。
在生物体内的细胞膜,离子盐负责电流的传送。细胞膜中的小孔道,称为离子通道,会选择什么离子可以通过。这直接决定了细胞膜的电阻。
非欧姆元件
编辑有些电路元件不遵守欧姆定律,它们的电压与电流之间的关系(I-V线)乃非线性关系。PN接面二极管是一个显明范例。如右图所示,随着二极管两端电压的递增,电流并没有线性递增。给定外电压,可以用I-V线来估计电流,而不能用欧姆定律来计算电流,因为电阻会因为电压的不同而改变。具有这种特性的电阻或元件称为“非线性电阻”或“非欧姆元件”。
非欧姆元件的常见实例包括二极管、气体放电灯(萤光灯)、压敏电阻等。
对于这类元件在特定电压电流下的电阻量,使用V-I线的斜率(或是I-V曲线斜率的倒数) ,称为小信号电阻(small-signal resistance)、增量电阻(incremental resistance)或动态电阻(dynamic resistance),定义为
- ,
温度对电阻的影响
编辑温度对不同物质的电阻会有不同的影响。
导电体
编辑假设温度接近室温,则典型金属的电阻 通常与温度 成正比[5]:
- ;
其中, 是典型金属在参考温度为 时的参考电阻, 是电阻温度系数。
是电阻变化百分比每单位温度。每一种物质都有其特定的 。实际而言,上述关系式只是近似,真实的物理是非线性的;换句话说, 本身会随着温度的改变而变化。因此,通常会在 字尾添加测量时的温度。例如, 是在温度为15 °C时测量的电阻温度系数;使用 为电阻温度系数,则参考温度 为15 °C,参考电阻为金属在参考温度为15 °C时的参考电阻,而且上述关系式只适用于计算温度在15 °C附近的电阻 [6]。
稍加排列,这方程又可表示为
- 。
取 的极限,则可得到微分方程[4]
- 。
所以,在温度为 时,物质的电阻温度系数是,其电阻对温度的曲线在温度为 时的斜率,除以温度为 时的电阻。
于1860年代,奥古斯土·马西森想出马西森定则(Matthiessen's rule)。这定则表明,总电阻率 可以分为两个项目[7]:
- ;
其中, 是由于晶体缺陷而产生的电阻率, 是由于声子而产生的电阻率。
与金属内部的缺陷密度有关,是电阻率对温度的曲线外推至0K时的电阻率。因此, 与温度无关。 等于 。假若缺陷密度不高,则 通常与缺陷密度无关。 与电子跟声子的碰撞率有关,而碰撞率与声子密度成正比。假设温度高于德拜温度,则声子密度与温度成正比,所以, 与温度成正比:
- 、
- ;
其中, 是比例常数。
这方程等价于前面电阻与温度的关系方程。
假设温度低于德拜温度,则电阻与温度的5次方成正比[8][9][10]:
- ;
其中, 是比例常数。
如右图所示,当温度接近绝对温度时,黄金和白金的电阻趋向于常数;而当温度小于4.2K时,水银的电阻突然从0.002欧姆陡降为10-6欧姆,成为超导体。
半导体
编辑温度越高,本征半导体的导电性质越优良,电子会被热能撞跳至导带,从而可以自由的移动,也因而留下空穴于价带,也可以自由的移动于价带。这电阻行为以方程表达为
- ;
其中, , 是常数。
杂半导体的电阻对于温度的反应比较复杂。从绝对零度开始,随着温度增加,由于载子迅速地离开施主或受主,电阻会急剧降低。当大多数的施主或受主都失去了载子之后,电阻会因载子的迁移率(mobility)下降而随温度稍为上升。当温度升得更高,杂半导体的电阻行为类似本征半导体;施主或受主的载子数量超小于因热能而产生的载子的数量,于是电阻会再度下降[12]。
绝缘体和电解质
编辑绝缘体和电解质的电阻与温度一般成非线性关系,而且不同物质有不同的变化,故不在此列出概括性的算式。
超导体
编辑某些材料在温度接近绝对零度(-273.15°C)或极低的温度时会出现超导现象,目前发现的超导体的最高温度约是203开尔文(-70°C)。
应变对电阻的影响
编辑导体的电阻受应变影响而改变。假设施加张力(一种应力的形式,会引起应变,即导体伸长)于导体,则导体沿张力的方向,其长度会增加,相对而言,导体于垂直张力方向的截面面积会减少。这两种效应共同贡献,使得受到张力的导体,其电阻会随之增加。假设施加压力,则由于压缩(方向相反的应变:导体缩短,截面面积增加),导体应变部分的电阻会减少。应用这效应,应变片(strain gauge)可以测量物体的应变与所受张力。
参看
编辑参考文献
编辑- ^ Alexander, Charles; Sadiku, Matthew, fundamentals of Electric Circuits 3, revised, McGraw-Hill: pp. 9–10, 2006, ISBN 9780073301150
- ^ Seymour J, Physical Electronics, pp 48–49, Pitman, 1972
- ^ Horowitz, Paul; Winfield Hill. The Art of Electronics 2nd. Cambridge University Press. 1989: 13. ISBN 0-521-37095-7.
- ^ 4.0 4.1 Pender, Harold & Del Mar, William (编), Handbook for Electrical Engineers:a reference book for practicing engineers and students 2nd, New York: John Wiley & Sons, Inc.: pp. 1350, 2094, 1922
- ^ Bird, John, Electrical and electronic principles and technology, Newnes: pp. 22–24, 2006, ISBN 9780750685566
- ^ Ward, MR, Electrical Engineering Science, pp36–40, McGraw-Hill, 1971.
- ^ Kittel, Charles, Introduction to Solid State Physics 8th, John Wiley & Sons, Inc.: 148–152, 2005, ISBN 9780471415268
- ^ A. Matthiessen, Rep. Brit. Ass. 32, 144 (1862)
- ^ A. Matthiessen, Progg. Anallen, 122, 47 (1864)
- ^ Enss, Christian; Hunklinger, Siegfried, Low-temperature physics illustrated, Springer: pp. 216–218, 2005, ISBN 9783540231646
- ^ 昂内斯, 海克, Investigations into the properties of substances at low temperatures, which have led, amongst other things, to the preparation of liquid helium. (PDF), Nobel Lecture, 1913年12月 [2010-12-23], (原始内容存档 (PDF)于2006-04-25)
- ^ Seymour J, Physical Electronics, chapter 2, Pitman, 1972
外部链接
编辑- 克莱门森大学车辆电子实验室网页:电阻计算机(英文)