数学上,自同构(automorphism)是从一个数学对象到自身的同构,可以看为这对象的一个对称,将这对象映射到自身而保持其全部结构的一个途径。一个对象的所有自同构的集合是一个,称为自同构群,大致而言,是这对象的对称群

定义

编辑

自同构的精确定义,依赖于“数学物件”的种类,及这对象的“同构”的准确界定。可以定义这些概念的最一般情形,是在数学的一个抽象分支,称为范畴论。范畴论是研究抽象对象和这些对象间的态射

在范畴论中,自同构是一个自同态(即是一个对象到自身的一个态射)而同时为(范畴论所定义的)同构

这是一个很抽象的定义,因为范畴论中,态射不一定是函数,对象不一定是集合。不过在更具象的情形中,对象会是有附加结构的集合,而态射会是保持这种结构的函数。

例如在抽象代数中,一个数学物件代数结构,如向量空间等。一个同构就是双射同态(同态按代数结构而定, 例如群同态环同态线性算子)。

恒等态射(恒等映射)在某些情况称为平凡自同构。相对地,其他(非恒等)自同构称为非平凡自同构

自同构群

编辑

  为一个。由   到自身群同构称为   的一个自同构。所有   的自同构所构成的集合记为   ,该集合与复合作为群运算共同构成了一个群,称为  自同构群。它满足群的公理:

  • 闭合性:两个自同态的复合是另一个自同态。
  • 结合性:态射复合一定有结合性。
  • 单位元素:单位元素是一个对象到自身的恒等映射,按定义一定存在。
  • 逆元素:任一同构按定义都有一个也是同构的逆映射,由于这逆映射也是同一对象的自同态,所以是自同构。

在一个范畴C中的一个对象X的自同构群,记为AutC(X),如果内文明显看出该范畴,可简记为Aut(X)。

例子

编辑

历史

编辑

群自同构的一个最早期的例子,是爱尔兰数学家威廉·哈密顿在1856年给出。在他的Icosian calculus英语Icosian calculus中,他发现了一个2阶的自同构,[4] 写道:

使得 是新的五次单位根,与之前的五次单位根 以完美互反性的关系相关联。[5]

内自同构和外自同构

编辑

有一些范畴,特别是李代数,其中的自同构可以分为两种,称为“内”自同构和“外”自同构。

对群而言,内自同构就是群本身的元素的共轭作用。对一个群G的每个元素a,以a共轭是一个运算φa : GG,定义为φa(g) = aga−1(或a−1ga;用法各异)。易知以a共轭是一个群自同构。内自同构组成 Aut(G)的一个正规子群,记作Inn(G)。

其他的自同构称为外自同构商群Aut(G) / Inn(G)通常记为Out(G);非平凡元素是包含外自同构的陪集

在任何有幺元的环或代数中的可逆元a,可以同样定义内自同构。对于李代数,定义有少许不同。

另见

编辑

参考文献

编辑
  1. ^ PJ Pahl, R Damrath. §7.5.5 Automorphisms. Mathematical foundations of computational engineering Felix Pahl translation. Springer. 2001: 376. ISBN 3-540-67995-2. 
  2. ^ Yale, Paul B. Automorphisms of the Complex Numbers (PDF). Mathematics Magazine. May 1966, 39 (3): 135–141 [2015-08-20]. JSTOR 2689301. doi:10.2307/2689301. (原始内容 (PDF)存档于2020-11-08). 
  3. ^ Lounesto, Pertti, Clifford Algebras and Spinors 2nd, Cambridge University Press: 22–23, 2001, ISBN 0-521-00551-5 
  4. ^ Sir William Rowan Hamilton. Memorandum respecting a new System of Roots of Unity (PDF). Philosophical Magazine. 1856, 12: 446 [2015-08-20]. (原始内容 (PDF)存档于2016-03-04). 
  5. ^ 原文为"so that   is a new fifth root of unity, connected with the former fifth root   by relations of perfect reciprocity."

外部链接

编辑