胱天蛋白酶9

位於1號人類染色體的基因

胱天蛋白酶9英語:Caspase 9)是人類中由CASP9基因編碼的一種。它是一種啟動型胱天蛋白酶[6]對於許多組織中發現的細胞凋亡途徑至關重要。[7]已經在已知存在的所有哺乳動物中發現了胱天蛋白酶9同源物,如小鼠Mus musculus)和黑猩猩Pan troglodytes)。[8]

胱天蛋白酶9
已知的結構
PDB直系同源搜尋: PDBe RCSB
識別號
別名CASP9;, APAF-3, APAF3, ICE-LAP6, MCH6, PPP1R56, caspase 9
外部IDOMIM602234 MGI1277950 HomoloGene31024 GeneCardsCASP9
為以下藥物的標靶
emricasan[1]
基因位置(人類
1號染色體
染色體1號染色體[2]
1號染色體
胱天蛋白酶9的基因位置
胱天蛋白酶9的基因位置
基因座1p36.21起始15,490,832 bp[2]
終止15,526,534 bp[2]
RNA表達模式


查閱更多表達數據
直系同源
物種人類小鼠
Entrez
Ensembl
UniProt
mRNA​序列

NM_001229
​NM_001278054
​NM_032996

NM_001277932
​NM_015733
​NM_001355176

蛋白序列

NP_001220
​NP_001264983
​NP_127463

NP_001264861
​NP_056548
​NP_001342105

基因位置​(UCSC)Chr 1: 15.49 – 15.53 MbChr 4: 141.52 – 141.54 Mb
PubMed​查找[4][5]
維基數據
檢視/編輯人類檢視/編輯小鼠

胱天蛋白酶9屬於胱天蛋白酶家族,主要參與細胞凋亡細胞因子信號轉導。[9]凋亡信號導致線粒體釋放細胞色素c並活化apaf-1凋亡複合體),然後將胱天蛋白酶9的酶原裂解為活性二聚體形式。[7]這種酶的調節是通過異構抑制劑磷酸化來實現的,抑制二聚化並誘導構象變化[9]

正確的胱天蛋白酶9功能對於細胞凋亡至關重要,有助於中樞神經系統的正常發育。[9]胱天蛋白酶9還具有多種與其在細胞凋亡中的作用無關的附加細胞功能。胱天蛋白酶9的非凋亡作用包括調節程式性壞死細胞分化先天免疫反應感覺神經元成熟、線粒體穩態、皮質脊髓路徑組織和缺血性血管損傷。[10]如果沒有正確的功能,可能導致異常的組織發育,引發功能異常、疾病和過早死亡。[9]胱天蛋白酶9缺失功能突變與免疫缺陷/淋巴增生性障礙神經管缺陷以及類李-佛美尼綜合症有關。胱天蛋白酶9活性增加與肌萎縮性脊髓側索硬化症視網膜脫離和慢通道綜合症,以及各種神經自體免疫心血管疾病的發展有關。[10]

由於選擇性剪接,產生了不同的胱天蛋白酶9蛋白質亞型。[11]

結構 編輯

與其他胱天蛋白酶類似,胱天蛋白酶9具有三個結構域:N端前結構域、大亞基和小亞基。[9]端前結構域也稱為長前結構域,其中包含胱天蛋白酶活化結構域(CARD基序[12]前結構域通過連接環與催化結構域連接。[13]

胱天蛋白酶9單體由一大一小亞基組成,均包含催化結構域[14]與其他胱天蛋白酶中通常保守的活性位點基序QACRG不同,胱天蛋白酶9具有基序QACGG。[15][13]

當二聚化時,胱天蛋白酶9在每個二聚體中具有兩種不同的活性位點構象。[14]其中一個位點與其他胱天蛋白酶的催化位點非常相似;而第二個位點沒有「活化環」,會破壞該特定活性位點的催化機制。[14]活性位點周圍的表面環很短,基質結合裂縫更開放,因此產生了廣泛的基質特異性。[16]在胱天蛋白酶9的活性位點內,必須有特定的氨基酸位於正確的位置,才能產生催化活性。位於P1位的氨基酸Asp是必需的,而位於P2位的氨基酸His更受青睞。[17]

定位 編輯

人類的胱天蛋白酶9存在於線粒體細胞質細胞核中。[18]

蛋白質表達 編輯

人類的胱天蛋白酶9在胎兒和成人組織中表達。[15][13]該酶的組織表達無處不在,在大腦心臟中表達最高,特別是在成人發育階段的心臟肌肉細胞中。[19]肝臟胰腺骨骼肌以中等水平表達該酶,而所有其他組織以低水平表達該酶。[19]

機制 編輯

活化的胱天蛋白酶9充當啟動型胱天蛋白酶,通過裂解從而活化下游執行型胱天蛋白酶,從而引發細胞凋亡。[20]一旦活化,胱天蛋白酶9就會繼續裂解胱天蛋白酶3、6和7,這些酶會裂解其他細胞靶點而啟動胱天蛋白酶級聯反應[9]

當胱天蛋白酶9失活時,它以單體形式作為酶原存在於細胞質中。[14][21]然後被apaf-1中的CARD通過識別胱天蛋白酶9中的CARD招募並活化。[22]

加工 編輯

在活化之前,胱天蛋白酶9必須經過加工處理。[23]最初,胱天蛋白酶9被製成無活性的單鏈酶原。[23]當凋亡複合體與胱天蛋白酶9前體結合時,加工就會發生,因為apaf-1有助於酶原的自蛋白水解加工。[23]加工後的胱天蛋白酶9與凋亡體複合物結合,形成全酶。[24]

活化 編輯

胱天蛋白酶9二聚化時會發生活化,有兩種不同的方式可以實現:

  1. 胱天蛋白酶9在與apaf-1(凋亡複合體)結合時會自動活化,因為apaf-1會寡聚胱天蛋白酶9前體分子。[18]
  2. 先前活化的胱天蛋白酶可以裂解胱天蛋白酶9,導致其二聚化。[25]

催化活性 編輯

胱天蛋白酶9的優選切割序列為Leu-Gly-His-Asp-(cut)-X。[17]

調節 編輯

胱天蛋白酶9的負調節通過磷酸化發生。[9]這是通過絲氨酸-196上的絲氨酸-蘇氨酸激酶Akt來完成的,它抑制胱天蛋白酶9的活化和蛋白酶活性,從而抑制胱天蛋白酶9及細胞凋亡的進一步活化。[26]Akt充當胱天蛋白酶9的變構抑制劑,因為絲氨酸-196的磷酸化位點離催化位點很遠。[26]該抑制劑影響胱天蛋白酶9的二聚化並引起構象變化,從而影響胱天蛋白酶9的基質結合裂口。[26]

Akt可以在體外作用於加工過的和未加工過的胱天蛋白酶9,其中加工過的胱天蛋白酶9的磷酸化發生在大亞基上。[27]

缺陷和突變 編輯

缺乏胱天蛋白酶9很大程度上會影響大腦及其發育。[28]與其他胱天蛋白酶相比,這種胱天蛋白酶的突變或缺陷的影響是有害的。[28]在細胞凋亡中,胱天蛋白酶9發揮的起始作用是導致那些患有非典型胱天蛋白酶9的人出現嚴重影響的原因。

胱天蛋白酶9不足的小鼠具有受影響或異常大腦的主要表型[9]由於細胞凋亡減少而導致大腦變大,從而導致額外神經元的增加,這是在胱天蛋白酶9缺陷小鼠中觀察到的表型的一個例子。[29]那些沒有胱天蛋白酶9的純合子會因大腦發育異常而在圍產期死亡[9]

在人類中,胱天蛋白酶9的表達因組織而異,並且不同水平具有生理作用。[29]低含量的胱天蛋白酶9會導致癌症神經退行性疾病阿茲海默症等。[29]胱天蛋白酶9單核苷酸多態性(SNP)水平和全基因水平的進一步改變可能導致與非霍奇金淋巴瘤相關的生殖系突變[30]胱天蛋白酶9啟動子中的某些多態性會提高胱天蛋白酶9的表達率,這會增加人患肺癌的風險。[31]

臨床意義 編輯

胱天蛋白酶9水平或功能異常會影響臨床界。胱天蛋白酶9對大腦的影響可能會引領未來通過靶向治療進行抑制研究,特別是與大腦相關的疾病,因為這種酶可能參與神經元疾病的發展途徑。[9]

胱天蛋白酶的引入也可能具有醫療益處。[20]移植物對抗宿主疾病的背景下,可以引入胱天蛋白酶9作為誘導開關。[32]當小分子存在時,它會二聚化並引發細胞凋亡,消除淋巴細胞[32]

iCasp9 編輯

iCasp9(誘導型胱天蛋白酶9)是一種嵌合抗原受體T細胞(CAR T細胞)的控制系統。CAR T細胞是經過基因改造的T細胞,對腫瘤細胞具有細胞毒性。有證據表明CAR T細胞可有效治療B細胞惡性腫瘤。然而,由於CAR T細胞會產生毒性,因此對細胞及其靶點的用戶控制至關重要。[33]對CAR T細胞進行控制的多種方法之一是通過藥物控制的合成系統。iCasp9是通過修飾胱天蛋白酶9並將其與FK506結合蛋白融合而創建的。[33]iCasp9可以作為誘導性自殺基因添加到CAR T細胞中。[34]

如果CAR T細胞治療導致嚴重副作用,iCasp9可用於停止治療。給予雷帕黴素等小分子藥物會導致藥物與FK506結構域結合。[34]這反過來會誘導胱天蛋白酶9的表達,從而觸發CAR T細胞的細胞死亡。[34]

替代轉錄 編輯

通過選擇性剪接可產生了四種不同的胱天蛋白酶9變體。

胱天蛋白酶9α(9L) 編輯

該變體用作參考序列,它具有完整的半胱氨酸蛋白酶活性。[12][35]

胱天蛋白酶9β(9S) 編輯

異構體2不包括外顯子3、4、5和6,它缺少氨基酸140-289。[12][35]胱天蛋白酶9S沒有中心催化結構域,因此它通過附着在凋亡體上作為胱天蛋白酶9α的抑制劑,抑制胱天蛋白酶級聯和細胞凋亡。[12][36]胱天蛋白酶9β被稱為內源性顯性失活亞型。

胱天蛋白酶9γ 編輯

該變體缺少氨基酸155-416,並且對於氨基酸152-154,序列AYI更改為TVL。[35]

異構體4 編輯

與參考序列相比,它缺少氨基酸1-83。[35]

相互作用 編輯

胱天蛋白酶9已被證明可以與以下物質相互作用

 
細胞凋亡涉及的信號轉導途徑概述。

參見 編輯

參考文獻 編輯

  1. ^ 對Caspase 9起作用的藥物;在維基數據上查看/編輯參考. 
  2. ^ 2.0 2.1 2.2 GRCh38: Ensembl release 89: ENSG00000132906 - Ensembl, May 2017
  3. ^ 3.0 3.1 3.2 GRCm38: Ensembl release 89: ENSMUSG00000028914 - Ensembl, May 2017
  4. ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  5. ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  6. ^ MeSH Browser. meshb.nlm.nih.gov. [2024-02-14]. (原始內容存檔於2024-02-22). 
  7. ^ 7.0 7.1 7.2 Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. November 1997, 91 (4): 479–89. PMID 9390557. S2CID 14321446. doi:10.1016/s0092-8674(00)80434-1 . 
  8. ^ HomoloGene - NCBI. www.ncbi.nlm.nih.gov. [2017-12-01]. (原始內容存檔於2023-07-18). 
  9. ^ 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 Kuida K. Caspase-9. The International Journal of Biochemistry & Cell Biology. 2000, 32 (2): 121–4. PMID 10687948. doi:10.1016/s1357-2725(99)00024-2. 
  10. ^ 10.0 10.1 Avrutsky MI, Troy CM. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Frontiers in Pharmacology. 2021, 12: 701301. PMC 8299054 . PMID 34305609. doi:10.3389/fphar.2021.701301 . 
  11. ^ CASP9 caspase 9 [Homo sapiens (human)] - Gene - NCBI. www.ncbi.nlm.nih.gov. [2017-11-30]. (原始內容存檔於2024-02-17). 
  12. ^ 12.0 12.1 12.2 12.3 Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget. April 2017, 8 (14): 23996–24008. PMC 5410359 . PMID 28177918. doi:10.18632/oncotarget.15098. 
  13. ^ 13.0 13.1 13.2 Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC, Wang L, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES. The Ced-3/interleukin 1beta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32. The Journal of Biological Chemistry. October 1996, 271 (43): 27099–106. PMID 8900201. doi:10.1074/jbc.271.43.27099 . 
  14. ^ 14.0 14.1 14.2 14.3 Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS. Dimer formation drives the activation of the cell death protease caspase 9. Proceedings of the National Academy of Sciences of the United States of America. December 2001, 98 (25): 14250–5. Bibcode:2001PNAS...9814250R. PMC 64668 . PMID 11734640. doi:10.1073/pnas.231465798 . 
  15. ^ 15.0 15.1 Duan H, Orth K, Chinnaiyan AM, Poirier GG, Froelich CJ, He WW, Dixit VM. ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. The Journal of Biological Chemistry. July 1996, 271 (28): 16720–4. PMID 8663294. doi:10.1074/jbc.271.28.16720 . 
  16. ^ Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. The Journal of Biological Chemistry. July 1997, 272 (29): 17907–11. PMID 9218414. doi:10.1074/jbc.272.29.17907 . 
  17. ^ 17.0 17.1 Blasche S, Mörtl M, Steuber H, Siszler G, Nisa S, Schwarz F, Lavrik I, Gronewold TM, Maskos K, Donnenberg MS, Ullmann D, Uetz P, Kögl M. The E. coli effector protein NleF is a caspase inhibitor. PLOS ONE. 2013-03-14, 8 (3): e58937. Bibcode:2013PLoSO...858937B. PMC 3597564 . PMID 23516580. doi:10.1371/journal.pone.0058937 . 
  18. ^ 18.0 18.1 Zhivotovsky B, Samali A, Gahm A, Orrenius S. Caspases: their intracellular localization and translocation during apoptosis. Cell Death and Differentiation. July 1999, 6 (7): 644–51. PMID 10453075. doi:10.1038/sj.cdd.4400536 . 
  19. ^ 19.0 19.1 Han Y, Chen YS, Liu Z, Bodyak N, Rigor D, Bisping E, Pu WT, Kang PM. Overexpression of HAX-1 protects cardiac myocytes from apoptosis through caspase-9 inhibition. Circulation Research. August 2006, 99 (4): 415–23. PMID 16857965. doi:10.1161/01.RES.0000237387.05259.a5 . 
  20. ^ 20.0 20.1 McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology. April 2013, 5 (4): a008656. PMC 3683896 . PMID 23545416. doi:10.1101/cshperspect.a008656. 
  21. ^ McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology. April 2013, 5 (4): a008656. PMC 3683896 . PMID 23545416. doi:10.1101/cshperspect.a008656. 
  22. ^ Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Molecular Cell. 2002, 9 (2): 423–32. PMID 11864614. doi:10.1016/s1097-2765(02)00442-2 . 
  23. ^ 23.0 23.1 23.2 Hu Q, Wu D, Chen W, Yan Z, Shi Y. Proteolytic processing of the caspase-9 zymogen is required for apoptosome-mediated activation of caspase-9. The Journal of Biological Chemistry. May 2013, 288 (21): 15142–7. PMC 3663534 . PMID 23572523. doi:10.1074/jbc.M112.441568 . 
  24. ^ Mace PD, Riedl SJ. Molecular cell death platforms and assemblies. Current Opinion in Cell Biology. December 2010, 22 (6): 828–36. PMC 2993832 . PMID 20817427. doi:10.1016/j.ceb.2010.08.004. 
  25. ^ Druskovic M, Suput D, Milisav I. Overexpression of caspase-9 triggers its activation and apoptosis in vitro. Croatian Medical Journal. December 2006, 47 (6): 832–40. PMC 2080483 . PMID 17167855. 
  26. ^ 26.0 26.1 26.2 Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. Science. November 1998, 282 (5392): 1318–21. Bibcode:1998Sci...282.1318C. PMID 9812896. doi:10.1126/science.282.5392.1318. 
  27. ^ Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. Science. November 1998, 282 (5392): 1318–21. Bibcode:1998Sci...282.1318C. PMID 9812896. doi:10.1126/science.282.5392.1318. 
  28. ^ 28.0 28.1 Madden SD, Cotter TG. Cell death in brain development and degeneration: control of caspase expression may be key!. Molecular Neurobiology. February 2008, 37 (1): 1–6. PMID 18449809. S2CID 12980212. doi:10.1007/s12035-008-8021-4. 
  29. ^ 29.0 29.1 29.2 Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell. 1998, 94 (3): 339–52. PMID 9708736. S2CID 14390544. doi:10.1016/s0092-8674(00)81477-4 . 
  30. ^ Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, Habermann TM, Slager SL, Cerhan JR. Germline variation in apoptosis pathway genes and risk of non-Hodgkin's lymphoma. Cancer Epidemiology, Biomarkers & Prevention. November 2010, 19 (11): 2847–58. PMC 2976783 . PMID 20855536. doi:10.1158/1055-9965.EPI-10-0581. 
  31. ^ Park JY, Park JM, Jang JS, Choi JE, Kim KM, Cha SI, Kim CH, Kang YM, Lee WK, Kam S, Park RW, Kim IS, Lee JT, Jung TH. Caspase 9 promoter polymorphisms and risk of primary lung cancer. Human Molecular Genetics. June 2006, 15 (12): 1963–71. PMID 16687442. doi:10.1093/hmg/ddl119 . 
  32. ^ 32.0 32.1 Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM. An inducible caspase 9 safety switch for T-cell therapy. Blood. June 2005, 105 (11): 4247–54. PMC 1895037 . PMID 15728125. doi:10.1182/blood-2004-11-4564. 
  33. ^ 33.0 33.1 Choe JH, Williams JZ, Lim WA. Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology. Annual Review of Cancer Biology. 2020, 4: 121–139. doi:10.1146/annurev-cancerbio-030419-033657 . 
  34. ^ 34.0 34.1 34.2 Definition of autologous iCASP9-CD19-expressing T lymphocytes. National Cancer Institute. [2020-07-02]. (原始內容存檔於2023-09-24). 
  35. ^ 35.0 35.1 35.2 35.3 CASP9 - Caspase-9 precursor - Homo sapiens (Human) - CASP9 gene & protein. www.uniprot.org. [2017-12-01]. (原始內容存檔於2024-02-17). 
  36. ^ Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, Smith SA, Lynch KW, Chalfant CE. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. The Journal of Biological Chemistry. March 2013, 288 (12): 8575–84. PMC 3605676 . PMID 23396972. doi:10.1074/jbc.M112.443333 . 
  37. ^ 37.0 37.1 Chu ZL, Pio F, Xie Z, Welsh K, Krajewska M, Krajewski S, Godzik A, Reed JC. A novel enhancer of the Apaf1 apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. The Journal of Biological Chemistry. March 2001, 276 (12): 9239–45. PMID 11113115. doi:10.1074/jbc.M006309200 . 
  38. ^ Cho DH, Hong YM, Lee HJ, Woo HN, Pyo JO, Mak TW, Jung YK. Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. The Journal of Biological Chemistry. September 2004, 279 (38): 39942–50. PMID 15262985. doi:10.1074/jbc.M405747200 . 
  39. ^ Hu Y, Benedict MA, Wu D, Inohara N, Núñez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proceedings of the National Academy of Sciences of the United States of America. April 1998, 95 (8): 4386–91. Bibcode:1998PNAS...95.4386H. PMC 22498 . PMID 9539746. doi:10.1073/pnas.95.8.4386 . 
  40. ^ Pan G, O'Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. The Journal of Biological Chemistry. March 1998, 273 (10): 5841–5. PMID 9488720. doi:10.1074/jbc.273.10.5841 . 
  41. ^ 41.0 41.1 41.2 Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. The EMBO Journal. April 1998, 17 (8): 2215–23. PMC 1170566 . PMID 9545235. doi:10.1093/emboj/17.8.2215. 
  42. ^ Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. The Journal of Biological Chemistry. April 2002, 277 (16): 13430–7. PMID 11832478. doi:10.1074/jbc.M108029200 . 
  43. ^ Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proceedings of the National Academy of Sciences of the United States of America. December 1996, 93 (25): 14486–91. Bibcode:1996PNAS...9314486S. PMC 26159 . PMID 8962078. doi:10.1073/pnas.93.25.14486 . 
  44. ^ Hlaing T, Guo RF, Dilley KA, Loussia JM, Morrish TA, Shi MM, Vincenz C, Ward PA. Molecular cloning and characterization of DEFCAP-L and -S, two isoforms of a novel member of the mammalian Ced-4 family of apoptosis proteins. The Journal of Biological Chemistry. March 2001, 276 (12): 9230–8. PMID 11076957. doi:10.1074/jbc.M009853200 . 
  45. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M. Towards a proteome-scale map of the human protein-protein interaction network. Nature. October 2005, 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. PMID 16189514. S2CID 4427026. doi:10.1038/nature04209. 
  46. ^ Davoodi J, Lin L, Kelly J, Liston P, MacKenzie AE. Neuronal apoptosis-inhibitory protein does not interact with Smac and requires ATP to bind caspase-9. The Journal of Biological Chemistry. September 2004, 279 (39): 40622–8. PMID 15280366. doi:10.1074/jbc.M405963200 . 
  47. ^ Richter BW, Mir SS, Eiben LJ, Lewis J, Reffey SB, Frattini A, Tian L, Frank S, Youle RJ, Nelson DL, Notarangelo LD, Vezzoni P, Fearnhead HO, Duckett CS. Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Molecular and Cellular Biology. July 2001, 21 (13): 4292–301. PMC 87089 . PMID 11390657. doi:10.1128/MCB.21.13.4292-4301.2001. 

拓展閱讀 編輯

外部連結 編輯