- 给定赋环空间 ,若F是O的O-子模,则称之为O的理想层,因为对开的 , 是环 的理想。
- 设X为n维光滑簇,则X的切层是余切层 的对偶,规范层 是 的n次外幂。
- 代数层是模层,也是环层。
设 为赋环空间。若F和G都是O-模,则它们的张量积
- or ,
也是O-模,与预层 相关联(计算 的全局截面,其中 是射影空间上的塞尔扭曲层,如此可知层化是不可避免的)。
同样,若F、G都是O-模,则
-
表示作为层 的O-模。[4]特别地,O-模
-
称作F的对偶模,记作 。注意:对任意O-模E、F,都有规范同态
- ,
若E是秩有限的局部自由层,则就是同构。特别地,若L局部自由且秩为1(称这样的L是可逆层或线丛 ),[5]则有
-
这意味着可逆层的同构类构成群,称作X的皮卡第群,规范等同于第一上同调群 (由标准的切赫上同调论证)。
若E是秩有限的局部自由层,则有配对给出的O-线性映射 ,称作E的迹映射。
对任意O-模F,其张量代数、外代数和对称代数的定义方式类似。例如,k次外幂
-
是与预层 相关联的层。若F是秩为n的局部自由层,则 称作F的行列式(determinant)线丛(严格说是可逆层),记作 。有自然的完美配对:
-
设 是赋环空间之间的态射。若F是O-模,则直像层 通过自然映射 是O'-模(这样的自然映射是赋环空间态射数据的一部分)。
若G是O'-模,则G的模逆像 是作为模的张量积的O-模:
-
其中 是G的逆像层, 由伴随从 得到。
和 之间有伴随关系:对任意O-模F、O'-模G,
-
是阿贝尔群。还有射影公式:对O-模F、秩有限的局部自由O'-模E,
-
令M是环A上的模。置 and write 。对每对 ,根据局部化的泛性质,有自然映射
-
有性质 。则
-
是对象为集合 、态射为集合包含的范畴,到阿贝尔群范畴的反变函子。可以证明[8]它实际上是B-层(即其满足胶合公理),于是定义了X上的层 ,称作与M相关联的层。
最基本的例子是X上的结构层,即 。此外, 具有 -模的结构,因此可得到A上模范畴 到 上模范畴的正合函子 。其定义了 到X上准凝聚层范畴的等价,其逆 是全局截面函子。X是诺特概形时,函子是从有限生成A-模到X上凝聚层范畴的等价。
此构造有以下性质:对任意A-模M、N与任意态射 ,
- .[9]
- 对A的任意素理想, 作为 -模。
- .[10]
- 若M是有限表示模, .[10]
- 由于 与X上准凝聚层范畴间的等价关系, 。
- ;[11]特别是,取直和与~交换。
- 当且仅当 的诱导序列正合,称A-模序列正合。特别地, .
层上同调以难以计算而闻名。正因如此,下面的一般事实对任何实际计算都是重要的:
定理 — 令X是拓扑空间,F是其上的阿贝尔层, 是X的开覆盖,使得 。则对任意i,
-
其中右式是第i切赫上同调。
塞尔消失定理[13]指出,若X是射影簇、F是其上的凝聚层,则对足够大的n,塞尔扭曲 由有限多全局截面生成。此外,
- 是在 上有限生成的;
- 有取决于F的整数 使得
[14][15][16]
令 是赋环空间,F、H是X上O-模的层。H对F的扩张是O-模的短正合列
-
与群扩张一样,若固定F、H,则H对F扩张的所有等价类构成阿贝尔群(参Baer和),其与Ext群 同构,当中 中的幺元对应平凡扩张。
H是O的情形下,有:
-
因为两侧是同一个函子 的右导出函子。
注: Hartshorne等学者不写下标O。
设X是诺特环上的射影概形。令F、G是X上的凝聚层,i是整数,则存在 使得
- .[17]
对任何凝聚层 都可用局部自由消解轻松计算:[18]给定复形
-
则
-
于是
-
考虑度数为d的光滑超曲面X,则可计算消解
-
并发现
-
考虑概形
-
其中 是光滑完全交, 。则有复形
-
消解了 ,可用于计算 。
- ^ Vakil, Math 216: Foundations of algebraic geometry (页面存档备份,存于互联网档案馆), 2.5.
- ^ Hartshorne,Ch. III, Proposition 2.2.
- ^ 此上同调函子与与阿贝尔层范畴中的全局截面函子的右导出函子重合,参Hartshorne,Ch. III, Proposition 2.6.
- ^ 有规范同态:
-
若F是有限表示,则其是同构(EGA, Ch. 0, 5.2.6.)
- ^ 对于凝聚层,有张量逆等同于局部自由且秩为1。实际上有事实:若 、且F凝聚,则F、G局部自由且秩为1。(cf. EGA, Ch 0, 5.4.3.)
- ^ Hartshorne,Ch III, Lemma 2.4.
- ^ see also: https://math.stackexchange.com/q/447234
- ^ Hartshorne,Ch. II, Proposition 5.1.
- ^ EGA I,Ch. I, Proposition 1.3.6. harvnb error: no target: CITEREFEGA_I (help)
- ^ 10.0 10.1 EGA I,Ch. I, Corollaire 1.3.12. harvnb error: no target: CITEREFEGA_I (help)
- ^ EGA I,Ch. I, Corollaire 1.3.9. harvnb error: no target: CITEREFEGA_I (help)
- ^ Hartshorne,Ch. II, Proposition 5.11.
- ^ Section 30.2 (01X8): Čech cohomology of quasi-coherent sheaves—The Stacks project. stacks.math.columbia.edu. [2023-12-07]. (原始内容存档于2024-08-04).
- ^ Costa, Miró-Roig & Pons-Llopis 2021,Theorem 1.3.1
- ^ Links with sheaf cohomology. Local Cohomology. 2012: 438–479. ISBN 9780521513630. doi:10.1017/CBO9781139044059.023.
- ^ Serre 1955,§.66 Faisceaux algébriques cohérents sur les variétés projectives.
- ^ Hartshorne,Ch. III, Proposition 6.9.
- ^ Hartshorne, Robin. Algebraic Geometry. : 233–235.
- Grothendieck, Alexandre; Dieudonné, Jean. Éléments de géométrie algébrique: I. Le langage des schémas. Publications Mathématiques de l'IHÉS. 1960, 4 [2024-04-13]. MR 0217083. doi:10.1007/bf02684778. (原始内容存档于2021-07-19).
- Hartshorne, Robin, Algebraic Geometry, Graduate Texts in Mathematics 52, New York: Springer-Verlag, 1977, ISBN 978-0-387-90244-9, MR 0463157
- Costa, Laura; Miró-Roig, Rosa María; Pons-Llopis, Joan. Ulrich Bundles. 2021 [2024-09-17]. ISBN 9783110647686. doi:10.1515/9783110647686. (原始内容存档于2023-10-01).
- Links with sheaf cohomology. Local Cohomology. 2012: 438–479. ISBN 9780521513630. doi:10.1017/CBO9781139044059.023.
- Serre, Jean-Pierre, Faisceaux algébriques cohérents (§.66 Faisceaux algébriques cohérents sur les variétés projectives.) (PDF), Annals of Mathematics, 1955, 61 (2): 197–278 [2024-04-13], JSTOR 1969915, MR 0068874, doi:10.2307/1969915, (原始内容存档 (PDF)于2024-06-04)