布萊克-休斯模型
布萊克-休斯模型(英語:Black-Scholes Model),簡稱BS模型,是一種為衍生性金融商品中的選擇權定價的數學模型,由美國經濟學家麥倫·休斯與費雪·布萊克首先提出。此模型適用於沒有派發股利的歐式選擇權。羅伯特·C·墨頓其後修改了數學模型,使其於有派發股利時亦可使用,新模型被稱為布萊克-休斯-墨頓模型(英語:Black–Scholes–Merton model)。
「Black-Scholes Model」的各地常用譯名 | |
---|---|
中國大陸 | 布萊克-舒爾斯模型 |
臺灣 | 布萊克-休斯模型 |
此模型的應用是透過買賣價格過高或是過低的選擇權,並同時與持有的資產避險,來消除可能潛在的風險,並因此而套利。此方法也被稱為「動態 Delta中性」。此公式問世後帶來了選擇權市場的繁榮,並且也是在投資銀行與避險基金中被廣為使用的基礎模型。
雖然在很多情況下被使用者進行一定的改動和修正。很多經驗測試表明這個公式足夠貼近市場價格,然而也有會出現差異的時候,如著名的「波動率的微笑」。然而它假設價格的變動,會符合常態分配(即俗稱的鐘形曲線),但在金融市場上經常出現符合統計學厚尾現象的事件,這影響此公式的有效性。
重要假設
編輯BS模型假設金融市場存在最少一種風險資產(如股票)及一種無風險資產(現金或債券)。
假設金融資產是:
假設金融市場是:
此外,假設選擇權是歐式選擇權,即只可在特定日期行權。
數學模型
編輯符號
編輯- V(S,t):歐式選擇權的理論價格
- C(S,t):認購選擇權的價格
- P(S,t):認沽選擇權的價格
- ln():自然對數
- K:交割價格
- S:即期價格(Spot)
- τ:有效期
- T:到期日
- t:時間,以年為單位,例如0.5代表6個月
- r:連續複利計無風險利率
- :年度化變異數
- N():常態分布變數的累積分布函數
布萊克-休斯方程式
編輯對於有效期內不派發紅利的歐式選擇權,其價格遵從以下偏微分方程式:
把方程式重寫成左右兩邊:
左方代表選擇權的時間值及與即期價格的凸性。右方代表選擇權長倉的無風險報酬及 股標的物短倉。
求解過程會轉換成為一個熱傳導方程式。
公式
編輯利用以下約束條件,可解認購選擇權(Call Option)的理論值。
認購選擇權的理論價格是:
其中:
利用相同的方法,也可解認沽選擇權的理論價格:
認購選擇權及認沽選擇權的理論價格都包含 ,把交割價格K以連續複利折算為現值。
派發股利的選擇權定價模型
編輯布萊克-休斯模型假定在選擇權有效期內標的股票不派發股利。若派發股利需改用布萊克-休斯-墨頓模型,其公式如下:
其中:
關聯項目
編輯外部連結
編輯- The Black–Scholes Model (頁面存檔備份,存於網際網路檔案館), global-derivatives.com
- Black, Merton, and Scholes: Their work and its consequences (頁面存檔備份,存於網際網路檔案館), by Ajay Shah
- The Black–Scholes Option Pricing Model (頁面存檔備份,存於網際網路檔案館), optiontutor