有许多种将实数定义为有序域的方式。合成的作法会提供许多实数的公理,将实数变成完备有序域。在一般集合论的公理下,可以证明这些公理都是明确的,也就是说有一个公理的模型,任两个模型都是同构的。这些模型中需要有一个有明确的定义,而大部份的模型都可以用实数为有序域时的基本性质来得到。
实数有许多重要的特性是和数学中格的定义有关,这些性质也是复数所没有的。其中最重要的是,实数形成有序域,实数的有序满足反对称性、传递性及完全性,属于全序关系,而且实数有最小上界性。实数中的偏序关系带来了实变分析中许多重要的定理,例如单调收敛定理、介值定理及中值定理。
在实变分析中这些定理只针对实数,不过许多的结果可以应用在其他的数学对象。特别是许多泛函分析及算子理论中的概念是来自实数中概念的扩展,这类的扩展包括里斯空间及正算子的理论。也有数学家考虑复数数列的实部及虚部,例如算子数列的逐点评估。
序列是一个定义域为可数全序集合的函数,多半会让定义域是自然数或是所有整数[1]。例如,一个实数的序列为以下定义的映射 ,常会表示为 。若一序列会慢慢的接近一个极限(也就是存在 ),称此序列为收敛,否则则称此序列为发散。
极限是指函数或序列在其输入接近一定值时,其输出数值所接近的特定定值[2]。极限是微积分学及广义数学分析的基础,连续函数、导数及积分也是利用极限来定义。
若函数的输入及输出值都是实数,可以表示成笛卡儿坐标系上的图形。粗略来说,若函数图形是一条连续未分割的曲线,其中没有“洞”或是“断点”,函数即为连续函数。
针对上述粗略的定义,在数学上有许多严谨的定义。这些定义彼此是等价的,因此会用最简单而方便的定义来确认一个函数是否是连续,在以下的定义中
-
是一个定义在实数 以内子集的函数,子集 称为函数 的定义域。子集 的一些可能选择包括 (所有实数)、以下的开区间
-
或闭区间
-
因此 及 是实数。
一致连续是连续函数中,比连续函数更强的性质。若X和Y是实数子集,函数 为一致连续的条件是针对所有大于0的实数 ,存在一实数 ,使得针对所有的 即表示 。
一致连续和每一点连续的差异在一致连续时, 值只和 值有关,和该值在定义域中的位置无关。一般情况下,连续不意味著均匀连续。
给定一无穷序列 ,即可定义相关的级数为 ,有时会简称为 。级数的部份和 为 。级数 收敛的条件是部份和的数列 收敛,否则级数即称为发散。收敛级数的和 定义为 .
等比数列的和就是一个收敛级数,也是芝诺悖论的基础:
- .
以下的调和级数即为发散级数:
- .
(此处“ ”不是严谨的表示方式,只是表示部份和会无限制地増长)
函数 在 位置的导数为以下的函数极限
-
若导数在所有位置都存在,称函数为可微分,可以再继续计算函数的高阶导数。
也可以将函数依其微分分类来区分。分类 包括所有连续函数,分类 包括所有导数连续的可微函数,这类函数称为“连续可微”。分类 是指其导数在分类 中的函数。一般来说,分类 可以用递归方式定义,定义方式是宣告分类 是所有的连续函数,而分类 ( 为正整数)是所有可微,而且其导数为 的函数。而分类 包括在分类 中,对所有的正整数 都成立。分类 是所有 的交集,其中 为所有的非负整数。 包括所有的解析函数,是分类 的严格子集。
黎曼积分定义函数的黎曼和,对应为一个区间内的标记分区(tagged partitions)。令 为实数下的封闭区间,则在区间 内的标记分区为有限数列
-
将区间 分隔为 个下标为 子区间 ,每一个用不同的点 来标记。函数f对应标记分区的黎曼和定义为
-
则和的每一项都是长方形的面积,其高为函数在给定子区间内,标示点的数值,宽和子区间的宽相等。令 为子区间 的宽,则标记分区的网格为长子区间中最宽区间的宽度 。函数 在区间 内的黎曼积分等于 若:
- 对所有 ,存在 使得,对于任何有标示,且网格小于 的区间 ,以下的式子成立
-
若选定的标示都是每个区间内函数的最大值(或最小值),黎曼积分就会成为上(或下)达布和,因此黎曼积分和达布积分有紧密的关系。
勒贝格积分是一种积分概念,可以将积分延伸到更大范围的函数,同时也拓展函数的定义域。
分布或是广义函数是一种将函数扩展后产生的概念。透过分布可以针对一些在传统定义下其导数不存在的函数进行微分(例如单位阶跃函数)。而任何局部可积函数都一定会有广义函数下的导数。
实变函数论是数学分析的一部份,探讨像数列及其极限、连续性、函数的导数及积分。实变分析专注在实数,多半会包括正负无穷大以形成扩展实轴。实变分析和研究复数对应性质的复分析紧密相关。在复分析中,很自然的会对全纯函数定义导数,全纯函数有许多有用的性质,包括多次可微、可以用幂级数表示,而且满足柯西积分公式。
实变分析中也很自然的去考虑可微、光滑函数或调和函数,这些也常常用到,不过仍少了一些复变中全纯函数中有力的性质。而且代数基本定理若以复数表示时会比较简单。
复变中解析函数理论的技巧也可以用在实变分析,例如应用留数定理来计算实变函数的定积分。