有許多種將實數定義為有序域的方式。合成的作法會提供許多實數的公理,將實數變成完備有序域。在一般集合论的公理下,可以證明這些公理都是明確的,也就是說有一個公理的模型,任兩個模型都是同构的。這些模型中需要有一個有明確的定義,而大部份的模型都可以用實數為有序域時的基本性質來得到。
實數有許多重要的特性是和數學中格的定義有關,這些性質也是複數所沒有的。其中最重要的是,實數形成有序域,實數的有序滿足反對稱性、傳遞性及完全性,屬於全序关系,而且實數有最小上界性。實數中的偏序关系帶來了實變分析中許多重要的定理,例如单调收敛定理、介值定理及中值定理。
在實變分析中這些定理只針對實數,不過許多的結果可以應用在其他的数学对象。特別是許多泛函分析及算子理論中的概念是來自實數中概念的擴展,這類的擴展包括里斯空間及正算子的理論。也有數學家考慮複數數列的實部及虛部,例如算子數列的逐點評估。
序列是一個定義域為可數全序集合的函数,多半會讓定義域是自然數或是所有整數[1]。例如,一個實數的序列為以下定義的映射 ,常會表示為 。若一序列會慢慢的接近一個极限(也就是存在 ),稱此序列為收斂,否則則稱此序列為發散。
極限是指函数或序列在其輸入接近一定值時,其輸出數值所接近的特定定值[2]。極限是微积分学及廣義数学分析的基礎,連續函數、导数及积分也是利用極限來定義。
若函数的輸入及輸出值都是实数,可以表示成笛卡儿坐标系上的图形。粗略來說,若函数图形是一條連續未分割的曲线,其中沒有「洞」或是「斷點」,函數即為連續函數。
針對上述粗略的定義,在數學上有許多嚴謹的定義。這些定義彼此是等价的,因此會用最簡單而方便的定義來確認一個函數是否是連續,在以下的定義中
-
是一個定義在實數 以內子集的函數,子集 稱為函數 的定義域。子集 的一些可能選擇包括 (所有實數)、以下的開區間
-
或閉區間
-
因此 及 是實數。
一致连续是連續函數中,比連續函數更強的性質。若X和Y是實數子集,函數 為一致连续的條件是針對所有大於0的實數 ,存在一實數 ,使得針對所有的 即表示 。
一致连续和每一點連续的差異在一致连续時, 值只和 值有關,和該值在定義域中的位置無關。一般情況下,連續不意味著均勻連續。
給定一無窮序列 ,即可定義相關的級數為 ,有時會簡稱為 。級數的部份和 為 。級數 收斂的條件是部份和的數列 收斂,否則級數即稱為發散。收斂級數的和 定義為 .
等比数列的和就是一個收斂級數,也是芝诺悖论的基礎:
- .
以下的調和級數即為發散級數:
- .
(此處“ ”不是嚴謹的表示方式,只是表示部份和會無限制地増長)
函數 在 位置的導數為以下的函數極限
-
若導數在所有位置都存在,稱函數為可微分,可以再繼續計算函數的高階導數。
也可以將函數依其微分分類來區分。分類 包括所有連續函數,分類 包括所有導數連續的可微函数,這類函數稱為「連續可微」。分類 是指其導數在分類 中的函數。一般來說,分類 可以用递归方式定義,定義方式是宣告分類 是所有的連續函數,而分類 ( 為正整數)是所有可微,而且其導數為 的函數。而分類 包括在分類 中,對所有的正整數 都成立。分類 是所有 的交集,其中 為所有的非負整數。 包括所有的解析函数,是分類 的嚴格子集。
黎曼積分定義函數的黎曼和,對應為一個區間內的標記分區(tagged partitions)。令 為實數下的封閉區間,則在區間 內的標記分區為有限數列
-
將區間 分隔為 個下標為 子區間 ,每一個用不同的點 來標記。函數f對應標記分區的黎曼和定義為
-
則和的每一項都是長方形的面積,其高為函數在給定子區間內,標示點的數值,寬和子區間的寬相等。令 為子區間 的寬,則標記分區的網格為長子區間中最寬區間的寬度 。函數 在區間 內的黎曼積分等於 若:
- 對所有 ,存在 使得,對於任何有標示,且網格小於 的區間 ,以下的式子成立
-
若選定的標示都是每個區間內函數的最大值(或最小值),黎曼積分就會成為上(或下)达布和,因此黎曼積分和达布积分有緊密的關係。
勒貝格積分是一種積分概念,可以將積分延伸到更大範圍的函數,同時也拓展函數的定义域。
分布或是广义函数是一種將函数擴展後產生的概念。透過分布可以針對一些在傳統定義下其導數不存在的函數進行微分(例如单位阶跃函数)。而任何局部可积函数都一定會有广义函数下的導數。
实变函数论是数学分析的一部份,探討像數列及其極限、連續性、函數的导数及积分。實變分析專注在实数,多半會包括正負無窮大以形成擴展實軸。實變分析和研究复数對應性質的複分析緊密相關。在複分析中,很自然的會對全純函數定義导数,全純函數有許多有用的性質,包括多次可微、可以用幂级数表示,而且滿足柯西積分公式。
實變分析中也很自然的去考慮可微、光滑函數或调和函数,這些也常常用到,不過仍少了一些複變中全純函數中有力的性質。而且代数基本定理若以複數表示時會比較簡單。
複變中解析函数理論的技巧也可以用在實變分析,例如應用留数定理來計算實變函數的定積分。