几何学中,双六角锥是指以六边形做为基底的双锥体,可以视为两个六角锥以底面些些组合成的多面体或一个六边形(不含内部)的每一个顶点向它所在的平面外一点与该点由平面镜射所产生的另外一个点依次连直线段而构成。所有双六角锥都有12个,18个和8个顶点[1][2]。所有双六角锥都是十二面体

双六角锥
双六角锥
类别双锥体
对偶多面体六角柱
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node_f1 2 node_f1 6 node 
node_f1 2 node_f1 3 node_f1 
施莱夫利符号{ } + {6}
康威表示法dP6在维基数据编辑
性质
12
18
顶点8
欧拉特征数F=12, E=18, V=8 (χ=2)
组成与布局
面的种类12个三角形(侧面)
基底为六边形
面的布局
英语Face configuration
V4.4.6
对称性
对称群D6h, [6,2], (*226), order 24
旋转对称群
英语Rotation_groups
D6, [6,2]+, (226), order 12
特性
图像

六角柱
对偶多面体

双六角锥有时被称为dodecadeltahedron[3]以区分其与正多面体——正十二面体(dodecahedron)的歧义。

相关多面体与镶嵌

编辑
半正六边形二面体球面多面体
对称群英语List of spherical symmetry groups[6,2], (*622) [6,2]+, (622) [1+,6,2], (322) [6,2+], (2*3)
                                                           
                   
{6,2} t{6,2} r{6,2} 2t{6,2}=t{2,6} 2r{6,2}={2,6} rr{6,2} tr{6,2} sr{6,2} h{6,2} s{2,6}
半正对偶
                                                           
                   
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V32 V3.3.3.3
半正对偶双棱锥
2 3 4 5 6 7 8 9 10 11 12 ...
                                                                          
                   
作为球面镶嵌
                     


参见

编辑

参考文献

编辑
  1. ^ Hexagonal Dipyramid页面存档备份,存于互联网档案馆) dmccooey.com [2014-6-23]
  2. ^ Pugh, Anthony, Polyhedra: A Visual Approach, University of California Press: 21, 27, 62, 1976 [2014-06-23], ISBN 9780520030565, (原始内容存档于2014-07-09) .
  3. ^ Anthony Pugh, Polyhedra: A Visual Approach, Dome series, 图解, University of California Press, 1976, ISBN 0520030567, ISBN 9780520030565, 第35页

外部链接

编辑