两性霉素B

抗真菌藥

两性霉素B(英语:Amphotericin B)是一种抗真菌药物,用于治疗严重的真菌感染利什曼病[3]真菌感染包括有毛霉菌病曲霉病芽生菌病念珠菌病山谷热(球孢子菌病)和隐球菌病。对于某些感染,可与氟胞嘧啶合并使用。[4]此药物通常透过静脉注射给药。[5]

两性霉素B
临床资料
商品名英语Drug nomenclatureFungizone、Mysteclin-F、AmBisome及其他。
AHFS/Drugs.comMonograph
MedlinePlusa682643
核准状况
怀孕分级
给药途径静脉注射
ATC码
法律规范状态
法律规范
药物动力学数据
生物利用度100% (静脉注射)
药物代谢
生物半衰期第一阶段:24小时,第二阶段:15天
排泄途径40%经由尿液排出,经由胆汁排出也很重要
识别信息
  • (1R,3S,5R,6R,9R, 11R,15S,16R,17R,18S,19E,21E, 23E,25E,27E,29E,31E,33R,35S,36R,37S)- 33-[(3-amino- 3,6-dideoxy- β-D-mannopyranosyl)oxy]- 1,3,5,6,9,11,17,37-octahydroxy- 15,16,18-trimethyl- 13-oxo- 14,39-dioxabicyclo [33.3.1] nonatriaconta- 19,21,23,25,27,29,31-heptaene- 36-carboxylic acid
CAS号12633-72-6  checkY
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
NIAID ChemDB
CompTox Dashboard英语CompTox Chemicals Dashboard (EPA)
ECHA InfoCard100.014.311 编辑维基数据链接
化学信息
化学式C47H73NO17
摩尔质量924.09 g·mol−1
3D模型(JSmol英语JSmol
熔点170 °C(338 °F)
  • O=C(O)[C@@H]3[C@@H](O)C[C@@]2(O)C[C@@H](O)C[C@@H](O)[C@H](O)CC[C@@H](O)C[C@@H](O)CC(=O)O[C@@H](C)[C@H](C)[C@H](O)[C@@H](C)C=CC=CC=CC=CC=CC=CC=C[C@H](O[C@@H]1O[C@H](C)[C@@H](O)[C@H](N)[C@@H]1O)C[C@@H]3O2
  • InChI=1S/C47H73NO17/c1-27-17-15-13-11-9-7-5-6-8-10-12-14-16-18-34(64-46-44(58)41(48)43(57)30(4)63-46)24-38-40(45(59)60)37(54)26-47(61,65-38)25-33(51)22-36(53)35(52)20-19-31(49)21-32(50)23-39(55)62-29(3)28(2)42(27)56/h5-18,27-38,40-44,46,49-54,56-58,61H,19-26,48H2,1-4H3,(H,59,60)/b6-5+,9-7+,10-8+,13-11+,14-12+,17-15+,18-16+/t27-,28-,29-,30+,31+,32+,33-,34-,35+,36+,37-,38-,40+,41-,42+,43+,44-,46-,47+/m0/s1 checkY
  • Key:APKFDSVGJQXUKY-INPOYWNPSA-N checkY

使用后常见的副作用有用药后不久会出现的发烧、发冷和头痛,以及肾脏问题。[5]可能会出现过敏反应(包括过敏性休克)。[5]其他严重的副作用有低血钾心肌炎[3]个体在怀孕期间使用对于胎儿似乎相对安全。[5]有一种脂质制剂具有较低的副作用风险。[5]它属于多烯抗真菌药物英语Polyene antimycotic,部分透过干扰真菌的细胞膜而发挥作用。[3][5]

必治妥施贵宝的医学研究所于1955年从委内瑞拉奥利诺科河河床[6]获得的结节链霉菌英语Streptomyces nodosus培养物中分离出两性霉素B,并于1958年将之用于医疗用途。[7][8]它已被列入世界卫生组织基本药物标准清单之中。[9]市面上有此药物的通用名药物流通。[5][10]

医疗用途

编辑

抗霉菌感染

编辑

两性霉素B的主要用途之一是治疗多种全身性真菌感染。由于它会产生广泛的副作用,通常只用于治疗重症或免疫缺陷患者的严重感染。此药物是治疗侵袭性毛霉菌病感染、隐球菌性脑膜炎以及某些麹霉菌和念珠菌感染的一线药物。[11][12]它在过去多年一直是种高效药物,很大程度上是因为它所治疗的病原体发生抗药性的几率较低。原本能够抵抗药物的病原体,会发生一些变化,使其变得更加脆弱,容易受到宿主体内的防御系统和其他环境因素的攻击,而无法造成感染。[13]

抗原虫感染

编辑

两性霉素B用于治疗会危及生命的原虫感染,如内脏利什曼病英语visceral leishmaniasis[14]福氏内格里阿米巴脑膜脑炎[15]

易感度谱系

编辑

下表列出医学上重要的真菌对两性霉素B的易感度。

菌种 两性霉素B

最小抑菌浓度断点 (毫克/升)

烟曲霉 1[16]
土曲霉 抗药性[16][17]
白色念珠菌 1[16]
光滑念珠菌英语Nakaseomyces glabratus 1[16]
克氏毕赤酵母英语Pichia kudriavzevii 1[16]
葡萄牙匙形孢子英语Clavispora lusitaniae 内在抗药性[17]
新型隐球菌 2[18]
尖孢镰刀菌 2[18]

配方

编辑

静脉注射制剂

编辑

两性霉素B难以溶于pH值为7的生理食盐水,有数种制剂形式被研发出以提高给药后的生物利用度[19]两性霉素B的脂质制剂并不比传统制剂更有效,但有一些证据显示患者对脂质制剂的耐受性会更好,且可能会有较少副作用。[20]

两性霉素B去氧胆酸钠

编辑

原始配方使用去氧胆酸钠来提高溶解度,[17]这种两性霉素B去氧胆酸钠 (ABD) 是静脉注射制剂。[21]这种原始剂型通常被称为"常规"两性霉素。[22]

脂质体制剂

编辑

为提高两性霉素的耐受性并降低毒性,已有几种脂质制剂推出。[17]脂质体制剂的肾毒性比去氧胆酸钠[23][24]更小,且相关反应也较少,[17]但价格比两性霉素B去氧胆酸钠更昂贵。[25]

脂质复合物制剂

编辑

目前也有多种脂质复合物制剂上市。 商品名为Abelcet的此类产品于1995年获得FDA批准,[26]它由两性霉素B和两种脂质以1:1的比例组成,形成大的带状结构。[17]商品名为Amphotec的制剂是两性霉素和胆固醇硫酸钠以1:1的比例组成,每个分子的两个分子形成一个四聚体,这些四聚体聚集在盘状复合物上的螺旋臂上,[27]于1996年获得FDA批准。[26]

口服制剂

编辑

此药物虽然有口服制剂,但未受广泛使用。[28]由于两性霉素B的两亲性及其低溶解度和渗透性导致的低生物利用度,成为口服使用的主要障碍。过去它曾被用于治疗消化道表面的真菌感染,如念珠菌症,但已被耐丝菌素氟康唑等其他抗真菌药物取代。[29]

然而最近出现的新型奈米颗粒药物递送方式,(例如AmbiOnp)、[30]奈米悬浮剂、基于脂质的药物递送方式(例如Cochleates)、自乳化药物递送方式、[31]固体脂质奈米颗粒[30]和聚合物奈米颗粒,[30]已证明两性霉素B口服制剂所具的潜力。[32]药业Matinas Biopharma制造的口服脂质奈米晶体两性霉素在隐球菌性脑膜炎方面已成功完成第2期临床试验。[33]

副作用

编辑

两性霉素B以其严重且可能致命的副作用著称,并赢得"两性暴君"的绰号。[34][35]通常是输注后不久(1至3小时内)会发生严重反应,包括高烧、发冷、低血压食欲不振恶心呕吐头痛呼吸困难呼吸急促昏睡和全身无力。剧烈的寒颤和发烧使该药有"先震颤后发烧"的绰号。[36][37]此类反应的确切原因尚不清楚,可能涉及前列腺素合成增加和巨噬细胞释放细胞激素[38][39]去氧胆酸钠制剂 (ABD) 也可能刺激肥大细胞嗜碱性球释放组织胺[40]反应有时会随着药物后续的使用而减弱。然而,几乎所有病患在使用药物后都会出现发烧的现象,这就使得专业人员需要做出一个关键且困难的判断:病患的高烧到底是快速恶化的新症状,还仅是药物副作用。为降低症状出现和严重程度,初始剂量应较低,然后缓慢增加。扑热息痛哌替啶苯海拉明氢羟肾上腺皮质素均被用于治疗或预防此种症候群,但由于患者的身体状况,这些药物的预防性使用通常会受到限制。[41]

两性霉素B静脉注射治疗剂量也与多重器官损伤有关联。肾损伤是一种经常受到报告的副作用,且可能会严重和/或不可逆转。脂质体制剂(例如AmBisome)的肾毒性据报导会较小,并且已成为已有肾损伤患者的首选。[42][43]当脂质体与真菌细胞壁结合时,前者的完整性被破坏,但不受哺乳动物细胞膜的影响,[44]前述与脂质体的结合减少肾脏对两性霉素B的暴露,为其较少肾毒性作用提供解释。[45]

此外,低血钾、低镁血症等电解质失衡现象也很常见。[46]在肝脏中,肝酵素升高和肝毒性英语hepatotoxicity(导致,包括暴发性肝衰竭英语Acute liver failure)很常见。在循环系统中,有多种形式的贫血和其他血液疾病(白血球减少症血小板减少症)、严重心律不整(包括心室颤动)、甚至有明显的心脏衰竭。皮肤反应,包括严重的形式,也有可能。[47]

与其他药物交互作用

编辑

当两性霉素B与以下药物共同给药时,有可能会发生药物间交互作用:[48]

  • 氟胞嘧啶:会增加氟胞嘧啶的毒性,可使用较低剂量的两性霉素B。两性霉素B可能会透过干扰真菌细胞膜的通透性,而促进氟胞胞嘧啶进入真菌细胞。
  • 顺铂利尿剂:增加肾毒性并升高低血钾的风险
  • 皮质类固醇:增加低血钾的风险
  • 抗霉菌药物:两性霉素B可能会拮抗酮康唑咪康唑的活性。这种交互作用的临床程度尚不清楚。
  • 神经肌肉阻滞药:两性霉素B诱导的低血钾症可能会增强某些麻醉剂的作用。
  • 膦甲酸更昔洛韦替诺福韦二吡呋酯阿德福韦:增加两性霉素B的血液学和肾脏副作用的风险
  • 齐多夫定:增加肾脏和血液毒性的风险。
  • 其他肾毒性药物(如氨基糖苷类抗生素):严重肾损害的风险增加
  • 细胞抑制剂:增加肾损伤、低血压和支气管痉挛的风险
  • 白血球输注:有肺损伤的风险,应将使用两性霉素B和输血两者的时间隔开,并监测肺功能

作用机转

编辑

两性霉素B与麦角固醇(真菌细胞膜的一种成分)结合,形成孔,导致单价离子(K+(钾)、Na+(钠)、H+(氢)和 Cl−(氯))快速泄漏而造成真菌细胞死亡。这是两性霉素B抗真菌剂的主要作用。[49][50]

目前已知有两种两性霉素:两性霉素A和B,但临床上仅使用B,因为它在体内的活性明显较高。两性霉素A与两性霉素B几乎相同,但几乎没抗真菌活性。[19]

毒性机制

编辑

哺乳动物和真菌膜均含有固醇,而固醇是两性霉素B的主要标靶。两性霉素B分子可在宿主膜和真菌膜上形成孔洞。这种膜屏障损伤会产生致命的影响。ref name=Baginski2009/>[51][52]麦角固醇(一种真菌固醇)比胆固醇(常见的哺乳动物固醇)对两性霉素B更敏感。与膜的反应性也取决于固醇浓度。[53]细菌不受影响,因为它们的细胞膜通常不含固醇。[54]

两性霉素B的给药受到输注相关毒性(输注期间和输注后不久发生的不良反应)的限制。这被认为是促发炎细胞因子的先天免疫作用产生的结果。[51][55]

生物合成

编辑

两性霉素B的天然合成途径中,聚酮合成酶英语polyketide synthase组分具有关键作用,负责催化前体化合物的合成、官能团修饰和环化等步骤。[56]

历史

编辑

此药物最初于1955年经施必治妥贵宝医学研究所从一种结节链霉菌的培养物中萃取。[19][57]从土壤培养物中分离出两种抗真菌物质 - 两性霉素A和B,B具有更好的抗真菌活性。在1980年代初开发出类抗真菌药物之前,此药物一直是治疗侵袭性真菌病感染的唯一有效疗法 。[21]

其完整的立体结构于1970年通过N-碘乙酰衍生物的X射线结构确定。[58]美国化学家K·C·尼古劳于1987年首次将天然存在化合物的对映体形式进行合成。[59]

配方

编辑

此药物是大环内酯类抗生素的亚类,具有相似的结构元素。[60]目前该药物有多种形式。 或是与去氧胆酸钠的常规复合(ABD)、胆固醇硫酸盐复合物(ABCD),脂质复合物(ABLC),以及脂质体制剂(LAMB)。后者的开发是为提高使用者的耐受性并降低毒性,但与传统的两性霉素B相比,会表现出相当不同的药物动力学特性。[17]

商品名称

编辑

两性霉素的名称源自于该药物的两性(指的是它具有酸性和碱性两种性质。既能与真菌细胞膜中的麦角固醇结合,破坏真菌细胞膜的结构和功能,发挥杀真菌作用,又能与人体细胞膜中的磷脂结合,引起细胞毒性。)特性。[61]

市场中的商品名称有Fungilin、Fungizone、Abelcet、AmBisome、Fungisome、Amphocil、Amphotec和Halizon等。[62]

参考文献

编辑
  1. ^ Updates to the Prescribing Medicines in Pregnancy database. Therapeutic Goods Administration (TGA). 2022-05-12 [2022-05-13]. 
  2. ^ Ambisome- amphotericin b injection, powder, lyophilized, for solution. DailyMed. [2021-08-11]. 
  3. ^ 3.0 3.1 3.2 World Health Organization. Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases. Geneva: World Health Organization. March 2010: 55, 88, 186. ISBN 9789241209496. hdl:10665/44412 . 
  4. ^ World Health Organization. Stuart MC, Kouimtzi M, Hill SR , 编. WHO Model Formulary 2008. World Health Organization. 2009: 145. ISBN 9789241547659. hdl:10665/44053 . 
  5. ^ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Amphotericin B. The American Society of Health-System Pharmacists. [2015-01-01]. (原始内容存档于2015-01-01). 
  6. ^ Velázquez L. Farmacología y su proyección a la clínica 13a ed.. Oteo. 1976: 966. ISBN 8485152050 (西班牙语). 
  7. ^ Walker SR. Trends and Changes in Drug Research and Development. Springer Science & Business Media. 2012: 109. ISBN 9789400926592. (原始内容存档于2017-09-10) (英语). 
  8. ^ Fischer J, Ganellin CR. Analogue-based Drug Discovery. John Wiley & Sons. 2006: 477. ISBN 9783527607495 (英语). 
  9. ^ World Health Organization. World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. 2019. hdl:10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO. 
  10. ^ Competitive Generic Therapy Approvals. U.S. Food and Drug Administration (FDA). 29 June 2023 [2023-06-29]. (原始内容存档于2023-06-29). 
  11. ^ Bennett JE, Dolin R, Blaser MJ. Drugs Active against Fungi, Pneumocystis, and Microsporidia. Elsevier Health Sciences. 2014-08-28: 479–494.e4. ISBN 978-1-4557-4801-3. 
  12. ^ Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs. 2012-09-17, 69 (3): 361–392. PMID 19275278. S2CID 34340503. doi:10.2165/00003495-200969030-00010. 
  13. ^ Rura N. Understanding the evolution of drug resistance points to novel strategy for developing better antimicrobials. 2013-10-29 [2016-11-14]. (原始内容存档于2016-11-15) –通过Whitehead Institute. 
  14. ^ den Boer M, Davidson RN. Treatment options for visceral leishmaniasis. Expert Review of Anti-Infective Therapy. April 2006, 4 (2): 187–197. PMID 16597201. S2CID 42784356. doi:10.1586/14787210.4.2.187. 
  15. ^ Grace E, Asbill S, Virga K. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrobial Agents and Chemotherapy. November 2015, 59 (11): 6677–6681. PMC 4604384 . PMID 26259797. doi:10.1128/AAC.01293-15. 
  16. ^ 16.0 16.1 16.2 16.3 16.4 European Committee on Antimicrobial Susceptibility Testing. Antifungal Agents, Breakpoint tables for interpretation of MICs (PDF). 2015-11-16 [2015-11-17]. 
  17. ^ 17.0 17.1 17.2 17.3 17.4 17.5 17.6 Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. June 2013, 73 (9): 919–934. PMID 23729001. S2CID 2785865. doi:10.1007/s40265-013-0069-4. 
  18. ^ 18.0 18.1 Index | The Antimicrobial Index Knowledgebase - TOKU-E. antibiotics.toku-e.com. [2015-11-17]. (原始内容存档于2015-11-09). 
  19. ^ 19.0 19.1 19.2 Dutcher JD. The discovery and development of amphotericin B. Diseases of the Chest. October 1968, 54 (Supplement_1): 296–298. PMID 4877964. doi:10.1378/chest.54.Supplement_1.296. 
  20. ^ Steimbach, Laiza M., Fernanda S. Tonin, Suzane Virtuoso, Helena HL Borba, Andréia CC Sanches, Astrid Wiens, Fernando Fernandez‐Llimós, and Roberto Pontarolo. "Efficacy and safety of amphotericin B lipid‐based formulations—A systematic review and meta‐analysis." Mycoses 60, no. 3 (2017): 146-154.
  21. ^ 21.0 21.1 Maertens JA. History of the development of azole derivatives. Clinical Microbiology and Infection. March 2004, 10 (Suppl 1): 1–10. PMID 14748798. doi:10.1111/j.1470-9465.2004.00841.x . 
  22. ^ Clemons KV, Stevens DA. Comparison of fungizone, Amphotec, AmBisome, and Abelcet for treatment of systemic murine cryptococcosis. Antimicrobial Agents and Chemotherapy. April 1998, 42 (4): 899–902. PMC 105563 . PMID 9559804. doi:10.1128/AAC.42.4.899. 
  23. ^ Botero Aguirre JP, Restrepo Hamid AM. Amphotericin B deoxycholate versus liposomal amphotericin B: effects on kidney function. The Cochrane Database of Systematic Reviews. November 2015, 2015 (11): CD010481. PMC 10542271 . PMID 26595825. doi:10.1002/14651858.cd010481.pub2 . 
  24. ^ Mistro S, Maciel I, de Menezes RG, Maia ZP, Schooley RT, Badaró R. Does lipid emulsion reduce amphotericin B nephrotoxicity? A systematic review and meta-analysis. Clinical Infectious Diseases. June 2012, 54 (12): 1774–1777. PMID 22491505. doi:10.1093/cid/cis290 . 
  25. ^ Bennett J. Editorial response: choosing amphotericin B formulations-between a rock and a hard place. Clinical Infectious Diseases. November 2000, 31 (5): 1164–1165. PMID 11073746. doi:10.1086/317443 . 
  26. ^ 26.0 26.1 Drugs@FDA: FDA Approved Drug Products. www.accessdata.fda.gov. [2015-11-03]. (原始内容存档于2014-08-13). 
  27. ^ Slain D. Lipid-based amphotericin B for the treatment of fungal infections. Pharmacotherapy. March 1999, 19 (3): 306–323. PMID 10221369. S2CID 43479677. doi:10.1592/phco.19.4.306.30934. 
  28. ^ Wasan KM, Wasan EK, Gershkovich P, Zhu X, Tidwell RR, Werbovetz KA, Clement JG, Thornton SJ. Highly effective oral amphotericin B formulation against murine visceral leishmaniasis. The Journal of Infectious Diseases. August 2009, 200 (3): 357–360. PMID 19545212. doi:10.1086/600105. 
  29. ^ Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clinical Infectious Diseases. March 2009, 48 (5): 503–535. PMC 7294538 . PMID 19191635. doi:10.1086/596757 . 
  30. ^ 30.0 30.1 30.2 Patel PA, Patravale VB. AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. Journal of Biomedical Nanotechnology. October 2011, 7 (5): 632–639. PMID 22195480. doi:10.1166/jbn.2011.1332. 
  31. ^ Wasan EK, Bartlett K, Gershkovich P, Sivak O, Banno B, Wong Z, Gagnon J, Gates B, Leon CG, Wasan KM. Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. International Journal of Pharmaceutics. May 2009, 372 (1–2): 76–84. PMID 19236839. doi:10.1016/j.ijpharm.2009.01.003. 
  32. ^ Patel PA, Fernandes CB, Pol AS, Patravale VB. Oral amphotericin B: challenges and avenues.. Int. J. Pharm. Biosci. Technol. 2013, 1 (1): 1–9. 
  33. ^ Boulware DR, Atukunda M, Kagimu E, Musubire AK, Akampurira A, Tugume L, Ssebambulidde K, Kasibante J, Nsangi L, Mugabi T, Gakuru J, Kimuda S, Kasozi D, Namombwe S, Turyasingura I, Rutakingirwa MK, Mpoza E, Kigozi E, Muzoora C, Ellis J, Skipper CP, Matkovits T, Williamson PR, Williams DA, Fieberg A, Hullsiek KH, Abassi M, Dai B, Meya DB. Oral Lipid Nanocrystal Amphotericin B for Cryptococcal Meningitis: A Randomized Clinical Trial. Clinical Infectious Diseases. August 2023, 77 (12): 1659–1667. PMC 10724459 . PMID 37606364. doi:10.1093/cid/ciad440 . 
  34. ^ Carr JR, Hawkins WA, Newsome AS, Smith SE, Amber BC, Bland CM, Branan TN. Fluid Stewardship of Maintenance Intravenous Fluids. Journal of Pharmacy Practice. October 2022, 35 (5): 769–782. PMC 8497650 . PMID 33827313. doi:10.1177/08971900211008261. 
  35. ^ Mourad A, Perfect JR. Tolerability profile of the current antifungal armoury. The Journal of Antimicrobial Chemotherapy. January 2018, 73 (suppl_1): i26–i32. PMC 6636388 . PMID 29304209. doi:10.1093/jac/dkx446. 
  36. ^ Shake and Bake. TheFreeDictionary.com. [2016-12-09]. 
  37. ^ Hartsel SC. Studies on Amphotericin B (PDF). Chem 491, Chemistry Department. University of Wisconsin-Eau Claire. [2016-12-08]. (原始内容存档 (PDF)于2016-12-20). 
  38. ^ Gigliotti F, Shenep JL, Lott L, Thornton D. Induction of prostaglandin synthesis as the mechanism responsible for the chills and fever produced by infusing amphotericin B. The Journal of Infectious Diseases. November 1987, 156 (5): 784–789. PMID 3309074. doi:10.1093/infdis/156.5.784. 
  39. ^ Sau K, Mambula SS, Latz E, Henneke P, Golenbock DT, Levitz SM. The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. The Journal of Biological Chemistry. September 2003, 278 (39): 37561–37568. PMID 12860979. doi:10.1074/jbc.M306137200 . 
  40. ^ Baronti R, Masini E, Bacciottini L, Mannaioni PF. Differential effects of amphotericin B and liposomal amphotericin B on inflammatory cells in vitro. Inflammation Research. May 2002, 51 (5): 259–264. PMID 12056514. S2CID 2124507. doi:10.1007/pl00000302. 
  41. ^ Goodwin SD, Cleary JD, Walawander CA, Taylor JW, Grasela TH. Pretreatment regimens for adverse events related to infusion of amphotericin B. Clinical Infectious Diseases. April 1995, 20 (4): 755–761. PMID 7795069. doi:10.1093/clinids/20.4.755. 
  42. ^ Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, Pappas P, Seibel N, Greenberg RN, Dummer S, Schuster M, Holcenberg JS. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. The New England Journal of Medicine. March 1999, 340 (10): 764–771. PMID 10072411. doi:10.1056/NEJM199903113401004 . 
  43. ^ Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, Harrison TS, Larsen RA, Lortholary O, Nguyen MH, Pappas PG, Powderly WG, Singh N, Sobel JD, Sorrell TC. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clinical Infectious Diseases. February 2010, 50 (3): 291–322. PMC 5826644 . PMID 20047480. doi:10.1086/649858. 
  44. ^ Jill Adler-Moore,* and Richard T. liposomal formulation, structure, mechanism of action and pre-clinical experience. Journal of Antimicrobial Chemotherapy (2002) 49, 21–30
  45. ^ J. Czub, M. Baginski. Amphotericin B and Its New Derivatives Mode of action. Department of pharmaceutical Technology and Biochemistry. Faculty of Chemistry, Gdnsk University of Technology. 2009, 10-459-469.
  46. ^ Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nature Reviews. Nephrology. April 2009, 5 (4): 193–202. PMID 19322184. S2CID 24486546. doi:10.1038/nrneph.2009.17. 
  47. ^ PRODUCT MONOGRAPH PrAmBisome® (PDF). Astellas Pharma Canada, Inc./Gilead Sciences. [2024-06-24]. 
  48. ^ Abelcet Package Insert (PDF). Leadiant Biosciences. Sigma-Tau Pharmaceuticals. [2022-07-14]. 
  49. ^ Mesa-Arango AC, Scorzoni L, Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Frontiers in Microbiology. 2012-01-01, 3: 286. PMC 3441194 . PMID 23024638. doi:10.3389/fmicb.2012.00286 . 
  50. ^ O'Keeffe J, Doyle S, Kavanagh K. Exposure of the yeast Candida albicans to the anti-neoplastic agent adriamycin increases the tolerance to amphotericin B (PDF). The Journal of Pharmacy and Pharmacology. December 2003, 55 (12): 1629–1633. PMID 14738588. S2CID 38893122. doi:10.1211/0022357022359. 
  51. ^ 51.0 51.1 Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Revista Iberoamericana de Micologia. December 2009, 26 (4): 223–7. PMID 19836985. S2CID 592301. doi:10.1016/j.riam.2009.06.003. 
  52. ^ Amphocin, amphotericin B for injection, USP (PDF). Pfizer. [2010-02-18]. (原始内容 (PDF)存档于2011-04-19). 
  53. ^ Vertut-Croquin A, Bolard J, Chabbert M, Gary-Bobo C. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Biochemistry. June 1983, 22 (12): 2939–2944. PMID 6871175. doi:10.1021/bi00281a024. 
  54. ^ Venega, Berenice; González-Damián, Javier. Amphotericin B Channels in the Bacterial Membrane: Role of Sterol and Temperature. Biophysical Journal. October 2003, 85 (4): 2323–2332 [2024-06-24]. doi:10.1016/s0006-3495(03)74656-6. 
  55. ^ Drew RH, Kauffman CA, Thorner AR. Pharmacology of amphotericin B.. UpToDate. MA Waltham. 
  56. ^ Khan N, Rawlings B, Caffrey P. A labile point in mutant amphotericin polyketide synthases. Biotechnology Letters. June 2011, 33 (6): 1121–1126. PMID 21267757. S2CID 10209476. doi:10.1007/s10529-011-0538-3. 
  57. ^ Procópio RE, Silva IR, Martins MK, Azevedo JL, Araújo JM. Antibiotics produced by Streptomyces. The Brazilian Journal of Infectious Diseases. 2012, 16 (5): 466–471. PMID 22975171. doi:10.1016/j.bjid.2012.08.014 . 
  58. ^ McNamara C, Crawforth J, Hickman B, Norwood T, Rawlings B. Biosynthesis of amphotericin B (PDF). Journal of the Chemical Society, Perkin Transactions 1 (thesis). January 1998, (1): 83–88 [2018-05-16]. doi:10.1039/A704545J. hdl:2381/33805 . (原始内容 (PDF)存档于2017-09-21). 
  59. ^ Nicolaou KC, Daines RA, Chakraborty TK, Ogawa Y. Total synthesis of amphotericin B. Journal of the American Chemical Society. 1987-04-01, 109 (9): 2821–2822. ISSN 0002-7863. doi:10.1021/ja00243a043. 
  60. ^ Chemistry and Biology of the Polyene Macrolide Antibiotics. Bacteriological Reviews. 
  61. ^ Christine D. Waugh, in xPharm: The Comprehensive Pharmacology Reference, 2007.
  62. ^ Halizon. Edu.drugs. [2016-11-14]. (原始内容存档于2016-11-15). 

外部链接

编辑