複數 (數學)

常見表達形式為a+bi (a, b∈R, i²=-1) 的數
各式各樣的
基本

延伸
其他

圓周率
自然對數的底
虛數單位
無限大

複數,為實數延伸,它使任一多項式方程都有。複數當中有個「虛數單位,它是的一個平方根,即。任一複數都可表達為,其中皆為實數,分別稱為複數之「實部」和「虛部」。

(z2 − 1)(z − 2 − i)2/z2 + 2 + 2i色相環複變函數圖形色相表示函數的輻角,飽和度明度表示函數的幅值。

複數的發現源於三次方程的根的表達式。數學上,「複」字表明所討論的數體為複數,如複矩陣複變函數等。

形式上,複數系統可以定義為普通實數的虛數i的代數擴展。這意味着複數可以作為變量i中的多項式進行加,減和乘,並施加規則。此外,複數也可以除以非零複數。總體而言,複數系統是一個

在幾何上,複數通過將水平軸用於實部,將垂直軸用於虛部,將一維數線的概念擴展到二維複平面。這些數字的點位於複平面的垂直軸上。虛部為零的複數可以看作是實數。

但是,複數允許使用更豐富的代數結構,其中包括在向量空間中不一定可用的附加運算。例如,兩個複數的乘積總是再次產生一個複數,並且不應將其誤認為是涉及向量的常規「乘積」。

歷史

編輯

最早提到有關負數平方根的文獻出於公元1世紀古希臘數學家亞歷山卓的希羅,他考慮的是一種不可能的平頂金字塔的體積,計算結果會是  ,但這對他是不可理解的,所以他只單純地把為正的 [1]

16世紀意大利數學家(請參看塔塔利亞卡爾達諾)得出一元三次四次方程式的根的表達式,並發現即使只考慮實數根,仍不可避免面對負數方根。17世紀笛卡爾稱負數方根為虛數,「子虛烏有的數」,表達對此的無奈和不忿。18世紀初狄默夫歐拉大力推動複數的接受。1730年,狄默夫提出狄默夫公式

 

而歐拉則在1748年提出分析學中的歐拉公式[2]

 

18世紀末,複數漸漸被大多數人接受,當時卡斯帕爾·韋塞爾提出複數可看作平面上的一點。[3]數年後,高斯再提出此觀點並大力推廣,複數的研究開始高速發展。詫異的是,早於1685年約翰·沃利斯已經在De Algebra tractatus提出此一觀點。

卡斯帕爾·韋塞爾的文章發表在1799年的Proceedings of the Copenhagen Academy上,以當今標準來看,也是相當清楚和完備。他又考慮球體,得出四元數並以此提出完備的球面三角學理論。1804年,Abbé Buée亦獨立地提出與沃利斯相似的觀點,即以 來表示平面上與實軸垂直的單位線段。1806年,Buée的文章正式刊出,同年讓-羅貝爾·阿爾岡亦發表同類文章,而阿岡的複數平面成了標準。1831年高斯認為複數不夠普及,他發表了一篇備忘錄,奠定複數在數學的地位。[4] 柯西阿貝爾的努力,掃除了複數使用的最後顧忌,後者更是首位以複數研究著名的。

複數吸引了著名數學家的注意,包括庫默爾(1844年)、克羅內克(1845年)、Scheffler(1845年、1851年、1880年)、Bellavitis(1835年、1852年)、喬治·皮科克(1845年)及德·摩根(1849年)。莫比烏斯發表了大量有關複數幾何的短文,約翰·彼得·狄利克雷將很多實數概念,例如質數,推廣至複數。

費迪南·艾森斯坦研究 ,其中  的複根。其他如  ( 是質數)亦有考慮。類以推廣的先鋒為庫默爾的完美數理論,經由菲利克斯·克萊因(1893年)以幾何角度加以簡化。伽羅華其後提出更一般的推廣——阿貝爾-魯菲尼定理,解決了五次以上多項式的根不能表達問題。

定義

編輯

符號表示

編輯

儘管可以使用其他表示法,複數通常寫為如下形式:

 

這裏的  實數,而i虛數單位,它有着性質 。實數 叫做複數的實部,而實數 叫做複數的虛部。實數可以被認為是虛部為零的複數;就是說實數 等價於複數 。實部為零且虛部不為零的複數也被稱作「純虛數」;而實部不為零且虛部也不為零的複數也被稱作「非純虛數」或「雜虛數」。

例如, 是複數,它的實部為3虛部為2。如果 ,則實部( )被指示為  ,而虛部( )被指示為  

在某些領域(特別是電子工程,這裏的i電流的符號)中,虛部 被替代寫為 ,所以複數有時寫為 

所有複數的集合通常指示為 ,或者用黑板粗體英語Blackboard bold寫為 。實數 可以被當作 子集,通過把實數的所有成員當作複數: 

等量關係

編輯

複數中的虛數是無法比較大小的,即兩個虛數只有相等和不等兩種等量關係。

兩個複數是相等的,當且僅當它們的實部是相等的並且它們的虛部是相等的。就是說,設 , , , 為實數,則 當且僅當 並且 

運算

編輯

通過形式上應用代數結合律交換律分配律,再加上等式 ,定義複數的加法、減法、乘法和除法:

  • 加法 
  • 減法 
  • 乘法 
  • 除法 

複數體

編輯

複數可定義為實數 組成的有序對,而其相關之為:

  •  
  •  

複數數系是一個,複數體常以 來表示。

一個實數 等同於複數 ,故實數體為複數體的子體。虛數單位 就是複數 。此外,還有:

  • 加法單位元(「零元素」):  
  • 乘法單位元(「單位元」):  
  •  加法反元素:  
  • 非零 的乘法反元素(倒數):  

複數體亦可定為代數數拓撲閉包或實數體的代數閉包

複數平面

編輯

先把坐標軸畫出來,橫的叫實軸,豎的叫虛軸,然後確定0的位置, 可以用二維空間來表示出來。
複數 可以被看作在被稱為阿甘得圖(得名於讓-羅貝爾·阿岡,也叫做高斯平面)的二維笛卡爾坐標系內的一個點或位置向量。這個點也就是這個複數 可以用笛卡爾(直角)坐標指定。複數的笛卡爾坐標是實部 和虛部 。複數的笛卡爾坐標表示叫做複數的「笛卡爾形式」、「直角形式」或「代數形式」。

絕對值、共軛與距離

編輯

 ,則  絕對值幅值大小)。如果 ,則 .

對所有  ,有

 
 
 

當定義了距離 ,複數體便成了度量空間,我們亦可談極限連續。加法、乘法及除法都是連續的運算。

 共軛複數定義為 ,記作  。如圖所示,  關於實數軸的「對稱點」。有

 
 
 
 
  當且僅當 是實數
 
 (「複數和其共軛值相乘等於其大小平方值」)
  非零。這是計算乘法逆最常用的等式。

對於所有代數運算 ,共軛值是可交換的。這即是說 。一些非代數運算如正弦 」亦有此性質。這是由於 的不明確選擇—— 有二解。可是,共軛值是不可微分的(參見全純函數)。

一複數 的「幅角」或「相位」為 。此值對模 而言是唯一的。

對於乘法和除法分別有:

 (即「模值相乘,幅角相加」或「大小相乘,相位相加」)
 (即「模值相除,幅角相減」或「大小相除,相位相減」)

複數運算的幾何解釋

編輯
 
X = A + B
 
X = AB
 
X = A*

考慮一個平面。一個點是原點0。另一個點是單位1。

兩個點AB是點X = A + B使得頂點0, A, B三角形和頂點X, B, A的三角形是全等的。

兩個點AB是點X = AB使得頂點0, 1, A的三角形和頂點0, B, X的三角形是相似的。

A共軛複數是點X = A*使得頂點0, 1, A的三角形和頂點0, 1, X的三角形相互是鏡像

極坐標形式

編輯

複數 也可以用極坐標來表示。 所對應的極坐標由叫做絕對值大小 和叫做輻角相位 組成。若 ,不論 值為何, 。為了避免一個複數具有多種極坐標表示的情況,通常會設置 ,從而讓 所對應的 具有唯一的值:  時,複數在輻角 模以 後是唯一的;就是說,對於兩個被視為極坐標表示的複數而言,若它們的輻角之差是 的整數倍數,則這兩個複數等價。因此,通常會限制 在區間 內,也就是說 ,以此來避免一個複數具有多種極坐標表示的情況。

極坐標形式的寫法

編輯

極坐標形式的寫法

 

被叫做「三角形式」。有時使用符號cis φ簡寫cosφ + isinφ。 使用歐拉公式還可以寫為

 

這叫做「指數形式」。

從極坐標形式到笛卡爾坐標形式的轉換

編輯
 
 

從笛卡爾坐標形式到極坐標形式的轉換

編輯
 
 

前面的公式要求非常繁雜的情況區分。但是很多程式語言提供了經常叫做atan2一個變體的反正切函數來處理這些細節。使用反餘弦函數的公式要求更少的情況區分:

 

極坐標形式下的乘法、除法、指數和開方根

編輯

在極坐標形式下乘法、除法、指數和開方根要比笛卡爾形式下容易許多。

使用三角恆等式得到

 

 

依據狄默夫定理做整數冪的指數運算,

 

任意複數冪的指數運算在條目指數函數中討論。

兩個複數的加法只是兩個向量的向量加法,乘以一個固定複數的可以被看作同時旋轉和伸縮。

乘以 對應於一個逆時針旋轉90 (  弧度)。方程 的幾何意義是順序的兩個90度旋轉導致一個180度( 弧度)旋轉。甚至算術中的 都可以被在幾何上被理解為兩個180度旋轉的組合。

任何數的所有方根,實數或複數的,都可以用簡單的算法找到。 次方根給出為

 

對於 ,這裏的 表示 的主 次方根。

下表給出任何複數 加法乘法的基本性質。

性質 加法 乘法
封閉性    
結合律    
交換律    
存在單位元    
存在反元素    
分配律  

一些特性

編輯

矩陣表達式

編輯

這是個實用價值不大,但具數學意義的表達式,是將複數看作能旋轉縮放二維位置向量的2×2實數矩陣,即是

 

其中  為實數。可算出此類矩陣的和、積及乘法逆都是此類矩陣。此外

 

即實數1對應着單位矩陣

 

而虛數單位 對應着

 

此矩陣令平面作逆時鐘90度旋轉,它的平方就是-1。

複數的絶對值就是行列式平方根。這些矩陣對應相應的平面變換,其旋轉角度等於複數的徧角,改變比例等於複數的絶對值。複數的軛就是矩陣的轉置

若矩陣中的  本來就是複數,則構成的代數便是四元數。由此,矩陣代表法可看成代數的凱萊-迪克森結構法

實向量空間

編輯

 可以視作二維綫性空間[5]不同於實數體,複數體上不可能有與其算術相容的全序 並非有序體

多項式的根

編輯

滿足 的複數z多項式 的「根」。代數基本定理指出,所有 次多項式,不管實數系數抑或複數系數的,都剛好有 個複數根( 重根按 個計算)。這定理等價於複數體是代數閉體

事實上,複數體是實數體的代數閉包。它是多項式 經由理想 顯生出的商環

 

這是一個體因為 不可約多項式,而 在商環內對應着虛數單位 

代數特徵

編輯

複數體 唯一(就體同構來說)的體擁有三項代數特徵:

而然, 包含很多與 同構的子

不可排序

編輯

 上不可能建立與其加法及乘法相容之全序關係,即不存在一全序 使得對於任意複數 ,有 

複指數冪

編輯

計算一個實數的複數冪是可以的。 可以定義為 

複分析

編輯

研究複變函數的理論稱為複分析。它在應用數學和其他數學分支上都有許多實際應用。實分析數論的結果,最自然的證明經常是以複分析的技巧完成(例子可見質數定理)。

複變函數的圖像是四維的,所以不像實變函數般可以用平面圖像表示。要表示複變函數的圖像,可以用有顏色的三維圖像表達四維資訊,或者以動畫表示函數對複平面的動態變換。

應用

編輯

系統分析

編輯

系統分析中,系統常常通過拉普拉斯轉換時域轉換到頻域。因此可在複平面上分析系統的極點零點。分析系統穩定性的根軌跡法奈奎斯特圖法尼科爾斯圖法都是在複平面上進行的。

無論系統極點和零點在左半平面還是右半平面,根軌跡法都很重要。如果系統極點

  • 位於右半平面,則因果系統不穩定;
  • 都位於左半平面,則因果系統穩定;
  • 位於虛軸上,則系統為臨界穩定的。

如果穩定系統的全部零點都位於左半平面,則這是個最小相位系統。如果系統的極點和零點關於虛軸對稱,則這是全通系統

信號分析

編輯

信號分析和其他領域使用複數可以方便的表示週期信號。模值 表示信號的幅度,輻角 表示給定頻率正弦波相位

利用傅立葉轉換可將實信號表示成一系列週期函數的和。這些週期函數通常用形式如下的複函數的實部表示:

 

其中 對應角頻率,複數 包含了幅度和相位的資訊。

電路分析中,引入電容電感與頻率有關的虛部可以方便的將電壓電流的關係用簡單的線性方程表示並求解。(有時用字母 作為虛數單位,以免與電流符號i混淆。)

反常積分

編輯

在應用層面,複分析常用以計算某些實值的反常積分,藉由複值函數得出。方法有多種,見圍道積分方法英語Methods of contour integration

量子力學

編輯

量子力學中複數是十分重要的,因其理論是建基於複數體上無限維的希爾伯特空間

相對論

編輯

如將時間變量視為虛數的話便可簡化一些狹義廣義相對論中的時空度量張量 (Metric Tensor)方程。

應用數學

編輯

實際應用中,求解給定差分方程模型的系統,通常首先找出線性差分方程對應的特徵方程的所有複特徵根r,再將系統以形爲f(t)= ert的基函數的線性組合表示。

流體力學

編輯

複函數於流體力學中可描述二維勢流

電路分析

編輯

物理工程領體中的交流電路分析,使用到相量作表達正弦信號

分形

編輯

一些分形曼德博集合茹利亞集(Julia set)是建基於複平面上的點的。

複數的平方根

編輯

複數的平方根是可以計算的。其公式為 

參見

編輯

參考資料

編輯
  1. ^ Nahin, Paul J. An Imaginary Tale: The Story of √-1. Princeton University Press. 2007 [20 April 2011]. ISBN 978-0-691-12798-9. (原始內容存檔於12 October 2012). 
  2. ^ Euler, Leonard. Introductio in Analysin Infinitorum [Introduction to the Analysis of the Infinite] vol. 1. Lucerne, Switzerland: Marc Michel Bosquet & Co. 1748: 104 [2021-11-03]. (原始內容存檔於2021-11-21) (拉丁語). 
  3. ^ Wessel, Caspar. Om Directionens analytiske Betegning, et Forsog, anvendt fornemmelig til plane og sphæriske Polygoners Oplosning [On the analytic representation of direction, an effort applied in particular to the determination of plane and spherical polygons]. Nye Samling af det Kongelige Danske Videnskabernes Selskabs Skrifter [New Collection of the Writings of the Royal Danish Science Society]. 1799, 5: 469–518 [2024-04-10]. (原始內容存檔於2024-04-09) (丹麥語). 
  4. ^ Gauss, Carl Friedrich. Theoria residuorum biquadraticorum. Commentatio secunda. [Theory of biquadratic residues. Second memoir.]. Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. 1831, 7: 89–148 [2024-04-10]. (原始內容存檔於2024-04-09) (拉丁語). 
  5. ^ 繆龍驥. 從實數到複數. 數學知識. [2014-10-22]. (原始內容存檔於2014-10-09). 

延伸閱讀

編輯
  • An Imaginary Tale: The Story of  , by Paul J. Nahin; Princeton University Press; ISBN 0-691-02795-1 (hardcover, 1998). A gentle introduction to the history of complex numbers and the beginnings of complex analysis.
  • Numbers, by H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert; Springer; ISBN 0-387-97497-0 (hardcover, 1991). An advanced perspective on the historical development of the concept of number.
  • The Road to Reality: A Complete Guide to the Laws of the Universe, by Roger Penrose; Alfred A. Knopf, 2005; ISBN 0-679-45443-8. Chapters 4-7 in particular deal extensively (and enthusiastically) with complex numbers.
  • Unknown Quantity: A Real and Imaginary History of Algebra, by John Derbyshire; Joseph Henry Press; ISBN 0-309-09657-X (hardcover 2006). A very readable history with emphasis on solving polynomial equations and the structures of modern algebra.
  • Visual Complex Analysis, by Tristan Needham; Clarendon Press; ISBN 0-19-853447-7 (hardcover, 1997). History of complex numbers and complex analysis with compelling and useful visual interpretations.

外部連結

編輯