核糖體(ribosome),舊稱「核糖核蛋白體」或「核蛋白體」,是細胞中的一種細胞器[1][注 1],它也是一種非膜狀特殊構造,由一大一小兩個次單元結合形成[2],主要成分是相互纏繞的RNA(稱為「核糖體RNA」,ribosomal RNA,簡稱「rRNA」)和蛋白質(稱為「核糖體蛋白質」,ribosomal protein,簡稱「RP」)。核糖體是細胞內蛋白質合成的場所,能讀取信使RNA核苷酸序列所包含的遺傳資訊,並使之轉化為蛋白質中氨基酸的序列資訊以合成蛋白質[3]。在原核生物真核生物地球上的兩種具有細胞結構的主要生命形式,前者可細分為古菌真細菌兩類)的細胞中都有核糖體存在。一般而言,原核細胞只有一種核糖體,而真核細胞具有兩種核糖體(線粒體葉綠體中的核糖體與細胞質核糖體不相同)。

細胞生物學
動物細胞

核糖體在細胞中負責完成「中心法則」裏由RNA到蛋白質這一過程[4],此過程在生物學中被稱為「轉譯」。在進行轉譯前,核糖體小次單元會先與從細胞核轉錄得到的信使RNA(messenger RNA,簡稱「mRNA」)結合,再結合核糖體大次單元構成完整的核糖體之後,便可以利用細胞質基質中的轉運RNA(transfer RNA,簡稱「tRNA」)運送的氨基酸分子合成多肽[5]。當核糖體完成對一條mRNA單鏈的轉譯後,大小次單元會再次分離。

英語中的「核糖體」(ribosome)一詞是由「核糖核酸」(「ribo」)和希臘語詞根soma」(意為「體」)組合而成的。

概述 編輯

 
核糖體組裝蛋白質分子聚合物,其序列由信使RNA分子控制。這是所有活細胞和相關的病毒必需的。

古菌真細菌的細胞質中以及真核細胞的細胞質基質、線粒體和葉綠體中都含有核糖體,但它們各自擁有的核糖體在大小、數量及組成等方面上都有所不同[6]

大小

核糖體的中軸線直徑稍長。 原核細胞中的70S核糖體直徑約為20nm(200Å),相對分子質量約為2.5MDa[7];真核細胞細胞質基質中的80S核糖體直徑則介於25nm至30nm之間(250-300Å),相對分子質量為3.9-4.5MDa,比70S核糖體大40%[8],真核細胞線粒體內的線粒體核糖體也比70S核糖體稍大一些[9]

數量

核糖體是原核細胞中唯一的一種細胞器,每個原核細胞中一般含有約15-18×103個核糖體;每個真核細胞中一般有106至107個核糖體。蛋白質合成旺盛的細胞(如未成熟的蟾蜍卵細胞)中核糖體往往比正常細胞多,其含量可達每個細胞約1012[10]哺乳動物的成熟紅血球不具有核糖體[11]

組成

核糖體都由rRNA及RP構成,是rRNA與RP的複合物,屬於核糖核蛋白(Ribonucleoprotein,簡稱「RNP」)。每個核糖體包含2-4條rRNA與60-90種RP[注 2]。70S核糖體中,rRNA約佔65%,核糖體蛋白質約佔35%;80S核糖體中,rRNA與RP之比接近1:1;而線粒體核糖體中蛋白質所佔比例是最高的,在這類核糖體中,rRNA約佔25%,核糖體蛋白質約佔75%。由於核糖體的核心成分是RNA(而非DNA),核糖體被部分生物學家認為是「RNA世界」遺留至今的痕跡[12]。(參見本條目組成章節。)

結構
 
核糖體大次單元(紅色)和核糖體小次單元(藍色)相互嵌合組成完整的核糖體。

原核生物的核糖體與真核生物的核糖體十分相似[13],每個核糖體都由一大一小兩個相互嵌合的次單元組成。根據改進自二位點模型(two-site model)的三位點模型(three-site model)[14],核糖體中含有A、P、E三個與tRNA結合的位點[15]。除以上三個tRNA位點之外,核糖體中還有結合mRNA及一些轉譯因子的位點。(參見本條目結構章節)

功能

核糖體可以與mRNA結合,在多種轉譯因子的輔助下讀取其中的遺傳資訊,並按照特定的資訊利用tRNA轉運來的氨基酸合成具有特定一級結構的多肽。對該過程有重要作用的活性區域是由RNA構成的,所以核糖體也被歸為核酶[16]。(核糖體執行其功能的詳細過程參見本條目工作過程章節)

分類

核糖體可按沉降係數、細胞中的存在位置及狀態等分類。

單位

研究核糖體及相關物質時常用代表單位離心力場下的沉降速度的沉降係數(sedimentation coefficient)來描述[注 3]。沉降係數的一般表達式為[注 4][17]

 

沉降係數以時間表示,一般使用斯維德伯格單位[注 5]符號為S。

歷史事件 編輯

基礎研究 編輯

核糖體是由羅馬尼亞籍細胞生物學家喬治·埃米爾·帕拉德電子顯微鏡於1955年在哺乳類禽類動物細胞中首次發現直徑20nm,富含RNA,能夠製造酶,他將這種新細胞器描述為密集的微粒或顆粒[18]。一年之後,A. J. Hodge等人在多種植物體細胞中也發現了核糖體,可是當時人們仍無法將微粒體中的核糖體完全區分開來[19]。後來,喬治·帕拉德以及阿爾伯特·克勞德克里斯汀·德·迪夫因發現核糖體於1974年被授於諾貝爾生理學或醫學獎

雖然核糖體作為一種細胞器在20世紀50年代初期已被發現,但對這種細胞器仍沒有統一的命名。直到1958年,科學家理查德·B·羅伯茨(Richard B. Roberts)才推薦人們使用「核糖體」一詞:

從此,人們對幾種細胞結構碎片概念上的理解逐漸清晰,核糖體這一細胞器本身也有了更明確的定義。這次統一命名為核糖體及相關方面的研究的發展奠定了良好的基礎。

在進入20世紀60年代後,隨着人們對核糖體的探索的不斷深入,許多學術成果也不斷湧現。蘇聯生物化學家亞歷山大·謝爾蓋維奇·斯皮林經過長期研究,發現核糖體各組分實際上不需其他物質輔助即可發生自我組裝[21]。Warner JR等人在1963年發現眾多核糖體共同轉譯同一條mRNA的現象,並將他們發現的結構名命為「多核糖體」(polyribosome)[22]。而B. J. McCarthy和J. J. Holland則1965年發現被干擾的核糖體在無細胞系統中可直接利用DNA作為模板合成蛋白質,而新黴素抗生素可增強這種特殊的轉譯[23]。在對不同類型的核糖體的研究方面,湯姆·奧布賴恩等人作出了較大貢獻:1967年,奧布賴恩等人在大鼠肝臟細胞的線粒體中發現核糖體[24]。1971年,奧布賴恩等證實之前在線粒體中發現的沉降係數約為55S的核糖體是與70S核糖體或80S核糖體都不相同的另一類核糖體[25]。同年,奧布賴恩等人又在胚胎的肝臟細胞線粒體內發現原本以為只存在於細胞質基質中的80S核糖體,並證實這些80S核糖體仍具有合成蛋白質的活性[26]

20世紀末各種顯微技術的發展使人們對微觀事物的研究上了一個台階。2000年,Poul Nissen等人測得核糖體大次單元中正在形成的肽鍵周圍1.8nm範圍內除了23S rRNA結構域Ⅴ的部分原子外,不存在任何核糖體蛋白質側鏈原子,從而證明了核糖體是一種核酶[27]

核糖體及轉譯系統中的相關分子(例如一種被稱為轉譯裝置(translational apparatus)的分子)的結構及功能是20世紀中期研究的熱點。直到今天,該領域的研究仍十分活躍。

精細結構研究 編輯

 
死海鹽盒菌Haloarcula marismortui)的50S次單元的三維分子結構圖。分子中的淡藍色部分為蛋白質,淡橙色及黃色部分為RNA單鏈[28]。分子核心的亮綠色部分為次單元的活性中心。

早在20世紀70年代初期,人們已開始着手了解核糖體整體的分子結構。

21世紀初,在人們有能力對亞顯微結構進行高解像度的研究後,描述核糖體結構的精確度達到十分之一納米[來源請求]

2000年,最初幾份關於核糖體原子級結構的論文連續發表:最先公佈的是屬於古菌中的死海鹽盒菌Haloarcula marismortui)核糖體50S次單元的結構圖[28]和屬於細菌中的抗輻射奇異球菌Deinococcus radiodurans[29]。不久之後,屬於嗜熱棲熱菌英語Thermus thermophilusThermus thermophilus)核糖體30S次單元的結構圖也被公佈[30]。緊接着,又有一份更精細的結構圖被公佈[31]。九年後,文卡特拉曼·拉馬克里希南托馬斯·施泰茨阿達·約納特因為確定這些核糖體的詳細結構和機制而被授予2009年諾貝爾化學獎[32]。2001年5月,上述幾份結構坐標被用於重現精確到5.5Å的嗜熱棲熱菌完整的70S核糖體分子結構[33]

 
嗜熱棲熱菌Thermus thermophilus)的30S次單元的三維分子結構圖。分子中的淡藍色部分為蛋白質,淡橙色部分為RNA單鏈[29]

兩份關於大腸桿菌Escherichia coli)的70S核糖體結構的論文則於2005年被發表。論文中描述了使用X射線晶體學方面的技術獲得解像度高達3.5Å的中空核糖體(未結合mRNA或tRNA的核糖體)的結構[34]。在該篇論文發表兩周後,一份基於冷電子顯微鏡技術的結構圖被公佈[35],該圖以11-15Å的解像度描繪了核糖體中一條剛合成的肽鏈被輸入蛋白質輸出通道(protein-conducting channel)的畫面。一年之後,結合了mRNA和tRNA的核糖體的原子級結構圖由兩個研究小組分別以2.8Å的解像度[36]及3.7Å的解像度[37]獨立繪出。這些結構圖使人們最終看到嗜熱棲熱菌核糖體與在該核糖體經典區域中結合的mRNA、tRNA一起反應的細節。過了不久,核糖體與一些含有夏因-達爾加諾序列的長鏈mRNA的反應也被在4.5-5.5Å的解像度下可視化[38]

在2011年,第一個從酵母中的釀酒酵母菌(Saccharomyces cerevisiae)的真核生物80S核糖體的完整的原子結構由晶體繞射獲得。[39]該模型揭示了真核生物特有要素的結構以及它們與普遍保存內核的相互作用。

合成 編輯

核糖體自組裝 編輯

在細菌細胞中,核糖體是通過對多個rDNA操縱組的轉錄在細胞質中合成的[40]。 在真核細胞中,核糖體的合成主要發生在細胞核的核仁細胞核中的一個區域)里。在該區域中,rDNA轉錄產生的45S rRNA前體(rRNA的前體分子)與從細胞質中運來的蛋白質結合形成80S rRNP前體,80S rRNP前體再經過加工(其中的45S rRNA前體被RNA酶裂解5.8S rRNA18S rRNA28Sr RNA的較小的rRNA片段),在5-10min內剪切成32S rRNP20S rRNP。20S rRNP在5min內再經加工形成12S rRNP,率先裝配成40S核糖體次單元。32S rRNP在經加工剪切為28S rRNP5.8S rRNP後,需耗費約30min才能與在核仁外合成的5S rRNA5S rDNA不定位在核仁組織區)共同裝配成60S核糖體次單元。[41]大小次單元經核孔排入細胞質後,裝配成核糖體。

核糖體一般的合成過程需要超過200種蛋白質的協同配合來完成聚合、加工核糖體內的4個rRNA,以及將rRNA和多種核糖體蛋白捆綁、組裝在一起。

大小次單元的聚合與解聚 編輯

大小次單元在細胞質中可分離存在,但兩者嵌合成完整核糖體後才具備轉譯能力[42]

Mg2+濃度為10mmol/L時,大小次單元聚合;Mg2+的濃度降至0.1mmol/L時,大小次單元則會發生解聚[43]

分佈及分佈狀態 編輯

在真核細胞中,細胞質核糖體以其分佈狀態分為游離核糖體(free ribosome)與膜結合核糖體(membrane-bound ribosome)兩類。同一種生物的游離核糖體與膜結合核糖體在結構上是沒有區別的,它們的不同只在於兩者在細胞中分佈位置上的差異。

游離核糖體 編輯

約70%的細胞質核糖體處於游離狀態[44],這些懸浮在細胞質基質中的核糖體稱為「游離核糖體」。游離核糖體幾乎可以在細胞質基質中沿細胞骨架任意移動。在游離核糖體上合成的蛋白質會直接釋放到細胞質基質中,這些蛋白質只能用於構成該細胞自身結構(稱為內源性蛋白,如肌紅蛋白肌纖維蛋白等)。

由於細胞質在整體上處於還原氛中且常含有高濃度穀胱甘肽,所以具有二硫鍵的蛋白質(二硫鍵由半胱氨酸殘基形成)不能在游離核糖體中合成。

狀態轉換 編輯

一個核糖體是處於游離態還是膜結合態僅僅取決於它們正在轉譯的mRNA單鏈首端第一個三聯體密碼子(AUG)之後是否有一段「內質網靶向信號序列」(ER-targeting signal sequence,長度約為45-90nt),該序列經核糖體轉譯,能得到長度約為16-26個氨基酸的多肽片段(稱為「信號肽」,signal peptide),這種合成了信號肽的核糖體在肽鏈延伸約80個氨基酸殘基後將進入膜結合態[注 7],附着在內質網上[45]

核糖體轉譯出的信號肽暴露在細胞質基質中,會被信號識別粒子(Signal Recognition Particle,簡稱SRP)識別結合,SRP能以其類似tRNA分子的構型佔據核糖體的A位點,使核糖體轉譯暫時停止。SPR可識別糙面內質網膜上相應的SRP受體(又稱停泊蛋白,docking proteins),而SRP受體又能使核糖體通過它與內質網上的易位子(translocon)相連[注 8]。當核糖體停止浮動後,SRP便與其受體分離,但核糖體將仍粘附在內置網膜上開始繼續轉譯,延伸的肽鏈則穿過易位子中的通道進入糙面內質網腔[46]

膜結合核糖體 編輯

另一些粘附在內質網的膜上[注 9]或核膜上的核糖體稱為「膜結合核糖體」。當一個核糖體開始形成一些其他細胞器中需要利用到的蛋白質時,這類核糖體可以與相應細胞器的細胞器膜相結合,成為膜結合核糖體。在真核細胞中,這一過程發生在一類稱為糙面內質網的內質網上。正在延伸中的肽鏈會不斷地被膜結合核糖體透過內質網膜注入內質網腔中,再以囊泡的形式通過分泌途徑Secretory pathway)輸送到的其他部位。膜結合核糖體既可以合成在細胞內被利用的蛋白質,也可以合成需要通過胞吐排出細胞的分泌蛋白(又稱為「外輸性蛋白質」,如抗體蛋白質類激素等)[來源請求]

聚核糖體 編輯

常見多個核糖體排列成螺紋狀或念珠狀,一起沿着一條mRNA單鏈進行轉譯。這種由一個mRNA串起來的多個核糖體的結構被稱為「聚核糖體」或「多聚核糖體」,它可以提高mRNA的轉譯效率[47]

組成 編輯

  • 真核細胞擁有沉降係數為80S的80S核糖體,它由沉降係數為40S的小次單元和沉降係數為60S的大次單元組成。80S核糖體包含4種沉降係數不同的rRNA及逾80種RP。其中,小次單元由18S rRNA(重約0.7MDa,長約1900nt)和約33種RP構成,而大次單元則由5S rRNA(性質與70S核糖體內的基本相同)、5.8S rRNA(重約40kDa,長約160nt)、28S rRNA(重約1.7MDa,長約4700nt)和約49種RP構成。[50][51][52]一些真核生物的線粒體或葉綠體中也包含有一大一小兩個以蛋白質相連的次單元的70S核糖體。根據「內共生學說」,真核細胞中的線粒體及葉綠體都是由被其他細胞吞噬的細菌演化而來的,所以這兩種細胞器中存在的核糖體與細菌細胞中的相似[53]

相關組分 編輯

解離從細胞內分離得到的核糖體除了能得到其本身包含的多種較難脫離的、屬於核糖體蛋白質的分子(稱為「真核糖體蛋白質」,real ribosomal proteins)外,還可以得到附着在核糖體上的其他蛋白質(稱為「核糖體相關蛋白質」,proteins associated with ribosome,簡稱「PAR」)。這些不是核糖體實際組分的分子主要為參與轉譯過程但並非核糖體組成部分的轉譯因子,容易被洗脫[來源請求]

結構 編輯

 
核糖體每個次單元都由具有三級結構的rRNA(褐色)及核糖體蛋白質(藍色)纏繞而成。紅色部分為活性中心。

核糖體都由一大一小兩個次單元構成,這兩個次單元中各具有為合成中的肽鏈、mRNA、tRNA及轉譯因子等分子提供的特殊的結構。核糖體大次單元與小次單元之間存在稱為「橋」的接觸面,總共有12對橋將大、小次單元連接起來,它們還起到大、小次單元間傳遞資訊的作用。70S核糖體的這些橋中,除了3對橋中包含了RP,其餘的橋都由rRNA組成。rRNA橋主要由16S rRNA小溝與23S rRNA小溝之間的相互作用來建立。rRNA-RP橋則通過蛋白質識別RNA結構而實現[56]

核糖體大次單元 編輯

核糖體大次單元外側邊緣有三個較明顯的凸起,凸起之間有兩處凹陷。大次單元內部有一條起源於肽酰轉移酶中心附近,橫貫大次單元的、為合成中的肽鏈提供的狹長通道(稱為「肽鏈輸出通道」),這條通道長約35aa[57](約8.5nm)。各種原核生物50S大次單元肽鏈輸出通道的孔徑大小並不完全相同(孔徑最大約2nm,最小約1nm),主要由23S rRNA構成,同時需要一些RP(如L4、L22、L39等)輔助成形[56]。有研究認為該通道具有動態的結構,不僅能與新生肽鏈中的效應模體相互作用調節轉譯效率,而且能夠調節通過通道的多肽鏈的共轉譯摺疊轉譯後修飾[58]

核糖體小次單元 編輯

核糖體小次單元大致呈扁弧形,一面也有凹陷。在小次單元一端約三分之一處有一條為mRNA穿過提供的凹槽(也稱為小次單元的「頸部」),該凹槽處的空間局限使得mRNA的解碼區呈現U形轉角構象[56]

在進行轉譯前,兩個游離的次單元結合在一起,協同轉譯夾在兩者之間的mRNA鏈[來源請求]

核糖體位點 編輯

  • 核糖體A位點(amino acyl-tRNA site,簡稱「A位」),也稱「受位」,是核糖體內接受新胺醯-tRNA的位點,主要部分位於大次單元中。在A位處5S rRNA有一段序列能與胺醯-tRNA的T29C環的保守序列互補,便於新胺醯-tRNA移入A位。起始用的tRNA沒有該段序列,故它只能直接進入核糖體P位。[57]
  • 核糖體P位點(peptidyl-tRNA site,簡稱「P位」),也稱「供位」,是核糖體內前一個tRNA將其肽基或甲酰甲硫胺醯基轉移至後一個tRNA上的位點。該位點在大次單元中的區域含有肽酰轉移酶。在對核糖體結晶學的研究中人們發現,核糖體該位點內的肽酰轉移酶附近1.8nm的範圍內並沒有核糖體蛋白質[59](一般認為細胞中的主要催化劑的化學本質是蛋白質)。該發現表明,核糖體中的蛋白質組份本身可能並不直接作為催化劑,而是充當rRNA依附的架構,並起到增強rRNA催化能力的作用(參見:核酶)。

工作過程 編輯

 
核糖體中肽鏈延長及蛋白質被分泌入內質網的過程的示意動畫。

原核細胞與真核細胞中進行的轉譯過程並不完全相同,大致可分為被原核轉譯真核轉譯古菌轉譯[60]三種類型。這三種類型轉譯步驟基本相同,但這幾種轉譯中利用的核糖體、mRNA及tRNA等在結構上有一定差異,且各需要一套轉譯因子系統的參與(其中真核轉譯中涉及的生物大分子約有200種[61])。

由核糖體主導的轉譯主要可分為起始、延伸、終止及再循環4個步驟[62]

核糖體對mRNA的轉譯過程是迅速且準確的。在37時,細菌細胞內合成肽鏈的速度約為每秒連接15個氨基酸[3]。當其合成速度達到每秒連接1000個氨基酸時,錯誤率約為十萬分之一[63]

轉譯起始 編輯

 
這一系列圖片是70S核糖體執行轉譯功能過程的圖解。(處於轉譯過程中的mRNAtRNA實際上是處於核糖體內部的。但為了讓讀者更好地了解mRNA、tRNA以及之後的圖片中還將出現的一些轉譯因子在核糖體中的位置和變化,作者將阻擋它們的核糖體區域隱去了。下同。)此圖展示的是原核轉譯的起始過程(結構2qnh與1vsp),圖中的mRNA與tRNA正在依靠各自的夏因-達爾加諾序列反夏因-達爾加諾序列相互識別並結合。

原核轉譯與轉譯中的起始過程基本相同:都先由fmet-tRNA、待轉譯mRNA和核糖體組成轉譯起始複合物(translation initiation complex)[64]。轉譯的起始過程需要起始因子參與,已發現的原核起始因子有3種,古菌起始因子有4種,真核起始因子有12種。

肽鏈延伸 編輯

轉譯起始後,核糖體沿mRNA鏈由5'端朝3'端移動。從起始密碼子處開始,核糖體利用具有與當前正在轉譯的密碼子相對應的反密碼子的胺醯-tRNA攜帶的氨基酸合成肽鏈。核糖體每轉譯一個三聯體密碼子就為延伸中的肽鏈的C端添加一分子氨基酸,其自身也同時順着mRNA單股移動一段距離。

肽鏈延伸階段是一個不斷循環進行的過程(直至核糖體到達終止密碼子處)。該階段可再細分為進位、成肽和移位三個步驟。真核及原核轉譯延伸階段的不同主要在於各自延伸因子體系的不同:已發現的原核延伸因子有3種,古菌延伸因子有2種,真核延伸因子有2種[72]

 
此圖展示的是原核翻譯中的延伸過程中的進位步驟(結構2wrn與2wro)。圖中左側紫色部分為攜帶了氨基酰-tRNA的EF-Tu,它通過EF-Ts水解GTP產生能量推動處於核糖體A位的tRNA進入P位。

進位 編輯

根據核糖體A位內mRNA部分密碼子的引導,具有對應反密碼子的氨基酰-tRNA進入A位的步驟,稱為「進位」。

  • 原核轉譯中,結合了GTP的延伸因子EF-Tu(EF-Tu·GTP)與氨基酰-tRNA形成氨基酰-tRNA·EF-Tu·GTP三元複合物並進入核糖體A位。EF-Ts催化水解複合物攜帶的GTP產生能量完成進位。之後,EF-Tu·GDP脫離核糖體,EF-Tu則釋放出GDP並與EF-Ts重新複合形成EF-T,以待再次被利用。
  • 真核轉譯中,氨基酰-tRNA由eEF-1以複合成氨基酰-tRNA·eEF-1·GTP三元複合物的形式帶入核糖體的A位[73]。GTP水解後,eEF-1·GDP離開核糖體。在真菌細胞中,延伸步驟還需要第三種真核延伸因子(eEF-3)參加,其作用是維持轉譯的準確性[72]
 
此圖展示的是原核翻譯的延伸過程中的轉肽步驟(結構2wdk與2wdl),圖中標出了核糖體內A、P、E三個位點。在該步中,肽酰轉移酶催化核糖體P位的tRNA運載的基團轉移到A位內tRNA轉運的氨基酸上,E位內的是卸載後準備排出核糖體的tRNA。亮綠色部分為tRNA上運載的肽鏈或氨基酸。

轉肽 編輯

核糖體的肽酰轉移酶催化位於核糖體P位的tRNA上運載的甲酰甲硫胺醯基肽酰基轉移到A位內剛進入核糖體的新氨基酰-tRNA轉運的氨基酸上,使前者的羧基與後者的氨基之間脫水縮合形成肽鍵。此步驟稱為「轉肽」(transpeptidation)。

轉肽步驟完全由核糖體大次單元內的核酶催化完成[74]。在轉肽這一步驟中生成的肽酰-tRNA將佔據核糖體A位,而P位中剛卸載甲酰甲硫胺醯基或肽酰基的空載tRNA則將進入核糖體的E位。

 
此圖展示的是原核翻譯的移位過程中的移位步驟(結構2wri與2wrj)。左側紫色部分為原核延伸因子中的EF-G,能促使核糖體內的tRNA發生位點間的移動。

移位 編輯

EF-G將位於核糖體A位的tRNA推入P位的步驟稱為「移位」。

EF-G具有轉位酶活性,能催化GTP水解提供能量,推動處於核糖體A位的肽酰-tRNA[75],使之進入P位(同時使P位中的tRNA進入E位、並使E位的tRNA排出核糖體),核糖體也沿mRNA移動一個密碼子。核糖體移位後,其A位將再次空出,為新氨基酰-tRNA進位提供空間。

在肽鏈延伸的過程中,上述三個步驟是重複循環的。循環每完成一次,肽鏈的C端便加入一個氨基酸分子,直至轉譯進入終止階段。

轉譯終止 編輯

 
此圖展示的是原核翻譯中的終止過程(結構2b64與2b66)。左側紫色部分是原核釋放因子RF-1,它能識別某些終止密碼子使翻譯停止。由於圖中mRNA末端和終止因數的解像度較低,所以只能看到大致的樣子,而不能觀察到它們的精細結構。

在核糖體讀取至終止密碼子[注 10]時,轉譯進入終止階段。轉譯的終止需要釋放因子的參與[76]。已發現的原核釋放因子有3種,而真核釋放因子有2種[77][注 11]

  • 原核轉譯中,終止密碼子由Ⅰ類釋放因子能識別[78]。其中,RF-1能識別終止密碼子UAA、UAG;而RF-2能識別UAA、UGA[79]RF-1或RF-2進入核糖體A位與終止密碼子互補配對後使轉譯停止。RF-3可使核糖體內部的肽酰轉移酶改變構象,從而發揮酯酶活性水解多肽與tRNA之間的化學鍵。在RR作用下,空載tRNA、mRNA和RF都與核糖體分離,核糖體的大、小次單元也發生解聚[來源請求]
  • 在真核轉譯中,三種終止密碼子都由eRF-1識別[80]。真核轉譯的終止過程與原核轉譯的也大體相同[81]

聯讀轉譯 編輯

轉譯終止失敗可能導致核糖體越過終止密碼子,朝mRNA的3'端繼續轉譯,這種現象稱為「聯讀轉譯」(read-through translation)。已發現多種mRNA聯讀轉譯的產物達到可檢測的水平。許多具有重要生理意義的蛋白質就是通過這種方式合成的。[82]

核糖體再循環 編輯

核糖體再循環是核糖體參與的轉譯中的最後一個過程。在該過程中,核糖體複合物發生解體,以便投入下一次使用。該過程是在核糖體再循環因子(RRF)和參與蛋白質合成過程中轉位的延伸因子(EF-G)的協同作用下完成的。核糖體在其再循環過程中由RRF的結構域Ⅰ識別結合核糖體的功能。RRF的結構域Ⅱ則具有將核糖體解離為大、小次單元的能力。[83]

功能抑制 編輯

化學藥劑師如今已可以利用細菌與真核生物(如人類)細胞中核糖體結構的差異來提取或合成能抵抗細菌感染而不損傷受感染者自身細胞的抗生素(如氨基糖苷類抗生素四環素類抗生素蛋白質合成抑制劑類抗生素),這類抗生素能抑制感染患者病原體微生物的細胞內的蛋白質合成。基於70S核糖體與80S核糖體結構上的不同,細菌細胞中的70S核糖體較容易受到某些抗生素的損害而真核細胞中的80S核糖體卻可以不受影響[84]。雖然一些真核生物的線粒體中也含有類似細菌核糖體的70S核糖體,但線粒體擁有具有一定選擇透過性、使這些抗生素不能隨意透過的雙層磷脂雙分子膜,所以這些細胞器也可以避免該類抗生素對其中核糖體的影響[85]

參見 編輯

註釋 編輯

  1. ^ 因為在某些場合「細胞器」一詞也會被用於專指具有磷脂雙分子層膜結構的亞細胞結構,而核糖體雖然已是一種公認的細胞器,卻是沒有被膜包裹、完全裸露的大分子,所以核糖體有時會被嚴格地定義為「無膜細胞器」(non-membranous organelles)。
  2. ^ 70S核糖體、80S核糖體或線粒體核糖體各自擁有的rRNA與RP的數量是相對固定的,但三者組分之間的數量差異較大。文中給出的範圍是指不同類核糖體所含rRNA與RP的數量的範圍,而不是某單獨一類核糖體各組分的範圍。參見本條目組成一節。
  3. ^ 需注意的是,沉降係數代表的並不是物質的大小或數量,所以核糖體各組分名稱中的數字相加並不等於原核糖體名稱中的數字。例如,70S核糖體實際上由30S核糖體次單元及50S核糖體次單元組成,而30+50≠70。
  4. ^ 其中,ω代表離心轉子的角速度(單位為rad/s),r代表物質到旋轉中心的距離(單位為m), 代表沉降速度(單位為m/s)。
  5. ^ 蛋白質、核酸及核糖核蛋白等生物大分子的沉降係數往往在10-13s左右,為方便起見,沉降係數中10-13s可換算為一個斯維德伯格單位,量綱為秒。
  6. ^ 原文:
  7. ^ 轉譯時未在mRNA上讀取到上述信號序列的核糖體則仍將保持游離狀態。核糖體轉變為膜結合態只是為了合成能導入內質網腔並分泌到細胞外的蛋白質,合成非分泌蛋白的游離態核糖體不需要轉換至膜結合態。
  8. ^ 易位子是一種蛋白質偶聯通道,糙面內質網膜中存在能與SRP受體結合的易位子,故核糖體可以粘附在糙面內質網上。
  9. ^ 粘附了核糖體的內質網被稱為「粗糙內質網」(或「糙面內質網」),這種內質網因其表面附有核糖體所以比平滑內質網顯得更粗糙而得名。
  10. ^ 終止密碼子有三種,分別為UAA(赭石密碼子)、UAG(琥珀密碼子)和UGA(蛋白石密碼子)。三種終止密碼子都不對應任何氨基酰-tRNA,所以不能被任何氨基酰-tRNA識別。
  11. ^ 原核釋放因子分為RF、RR兩類,其中RF可再細分為RF1與RF2(Ⅰ類)及RF3(Ⅱ類)。真核釋放因子僅有RF,也可細分為兩類:eRF1(Ⅰ類)與eRF3(Ⅱ類)。

參考文獻 編輯

  1. ^ 朱正威、趙占良等. 生物1分子与细胞. 北京市海淀區中關村南大街17號院1號樓: 人民教育出版社. 2007年: 44–46 [2011年]. ISBN 978-7-107-17670-8. (原始內容存檔於2017-06-13) (中文(簡體)). 
  2. ^ Masatoshi Kondo, Gudmundur Eggerston, Jerome Eisenstadt & Peter Liengyel. Ribosome Formation from Subunits: Dependence on Formylmethionyl-transfer RNA in Extracts from E. coli. (PDF). Nature. 1968-10-26, 220 (5165): 368–371. PMID 4879330. doi:10.1038/220368a0 (英語). 
  3. ^ 3.0 3.1 朱正威、趙占良等. 生物2 遗传与进化. 北京市海淀區中關村南大街17號院1號樓: 人民教育出版社. 2007年: 44–46 [2011]. ISBN 978-7-107-17672-2. (原始內容存檔於2017-06-13) (中文(簡體)). 
  4. ^ 李振剛. 中心法则导论(一). 生物學雜誌. 1993, (4) [2011-02-27]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  5. ^ Albert E. Dahlberg. RIBOSOME STRUCTURE The Ribosome in Action. Science. 2001-05-04, 292 (5518): 868–869 [2011-03-07]. doi:10.1126/science.1061513. (原始內容存檔於2015-09-24) (英語). 
  6. ^ 吳鶴齡. 分子遗传学简介. 遺傳. 1982 [2011-03-08]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  7. ^ Jamie H. Cate , Marat M. Yusupov , Gulnara Zh. Yusupova , Thomas N. Earnest and Harry F. Noller. X-ray Crystal Structures of 70 S Ribosome Functional Complexes. Science. 1999-09-24, 285 (5436): 2095–2104. doi:10.1126/science.285.5436.2095 (英語). 
  8. ^ Adam Ben-Shem, Lasse Jenner, Gulnara Yusupova and Marat Yusupov. Crystal Structure of the Eukaryotic Ribosome. Science. 2010-11-26, 330 (6008): 1203–1209. doi:10.1126/science.1194294 (英語). 
  9. ^ Hamilton, M.G. and O'Brien, T.W. Ultracentrifugal Characterization of the Mitochondrial Ribosome and Subribosomal Particles of Bovine Liver: Molecular Size and Composition.. Biochemistry. 1974-12-17, 13 (26): 5400–5403 [2011-03-18]. (原始內容存檔於2020-04-16) (英語). 
  10. ^ 羅進賢. 分子生物学引论. 廣東: 中山大學出版社. 1987年11月: 299 (中文(簡體)). 
  11. ^ 李依新、潘桂珍. 哺乳动物成熟红细胞的呼吸方式. 生物學教學. 2007, 32 (8) [2011-03-23]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  12. ^ Cech T. Structural biology. The ribosome is a ribozyme. Science. 2000-08-01, 289 (5481): 878–879. PMID 10960319. doi:10.1126/science.289.5481.878 (英語). 
  13. ^ Bruce Alberts; et al. The Molecular Biology of the Cell, fourth eddition. Garland Science. 2002: 342. ISBN 0-8153-3218-1 (英語). 
  14. ^ Hans-Jorg Rheinberger, Hanssternbach, and Knud H.Nierhaus. Three tRNA binding sites on Escherichia coli ribosomes (aminoacyl-tRNA site / peptidyl-tRNA site / chloramphenicol) (PDF). Biochemistry. 1981-09, 78 (9): 5310–5314 [2011-03-08]. (原始內容存檔 (PDF)於2021-08-03) (英語). 
  15. ^ Rajendra K. Agrawal , Pawel Penczek , Robert A. Grassucci , Yanhong Li , ArDean Leith , Knud H. Nierhaus and Joachim Fran. Direct Visualization of A-, P-, and E-Site Transfer RNAs in the Escherichia coli Ribosome. Science. 1996-02-16, 271 (5251): 1000–1002 [2011-03-08]. doi:10.1126/science.271.5251.1000. (原始內容存檔於2015-09-24) (英語). 
  16. ^ Rodnina MV, Beringer M, Wintermeyer W. How ribosomes make peptide bonds. Trends Biochem. Sci. 2007-01, 32 (1): 20–26 [2011-03-08]. PMID 17157507. doi:10.1016/j.tibs.2006.11.007. (原始內容存檔於2020-04-16) (英語). 
  17. ^ 謝聖高、郗娟、寧勇、鄒光楣. 沉降系数单位斯维德伯格及其在生物大分子中的应用. 湖北中醫學院學報. 2006, 8 (2) [2011-02-20]. (原始內容存檔於2015-05-09) (中文(簡體)). 
  18. ^ G.E. Palade. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955-01, 1 (1): 59–68 [2011-03-11]. PMID 14381428. (原始內容存檔於2020-04-16) (英語). 
  19. ^ A. J. Hodge, E. M. Martin, and R. K. Morton. The Structure of Some Cytoplasmic Components of Plant Cells in Relation to the Biochemical Properties of Isolated Particles. J Biophys Biochem Cytol. 1957-01-25, 3 (1): 61–70 [2011-03-11]. PMID 13416311. (原始內容存檔於2021-06-29) (英語). 
  20. ^ Roberts, R. B. "Introduction" in Microsomal Particles and Protein Synthesis.. New York: Pergamon Press, Inc. 1958 (英語). 
  21. ^ Alexander S. Spirin. The Ribosomeas a Conveying Thermal Ratchet Machine. J Biol Chem. 2009-08-07, 284 (32): 21103–21119 [2011-03-06]. PMID 19416977. doi:10.1074/jbc.X109.001552. (原始內容存檔於2021-08-03) (英語). 
  22. ^ Warner JR, Knopf PM, Rich A. A multiple ribosomal structure in protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 1963, 49: 122–129. PMC 300639 . PMID 13998950. doi:10.1073/pnas.49.1.122 (英語). 
  23. ^ B. J. McCarthy and J. J. Holland. Denatured DNA as a Direct Template for in vitro Protein Synthesis (PDF). Proceedings of the National Academy of Sciences of the United States. 1965-09, 54 (3): 880–886 [2011-03-06]. PMC 219759 . PMID 4955657. doi:10.1073/pnas.54.3.880. (原始內容存檔 (PDF)於2021-08-03) (英語). 
  24. ^ O'Brien, T.W.; Kalf, G.F. Ribosomes from Rat Liver Mitochondria. II. Partial Characterization. J. Biol. Chem. 1967-05-10, 242 (9): 2180–2185 [2011-03-12]. PMID 6022864. (原始內容存檔於2020-04-16) (英語). 
  25. ^ O'Brien, T.W. The General Occurrence of 55S Ribosomes in Mammalian Liver Mitochondria. J. Biol. Chem. 1971-05-25, 246 (10): 3409–3417 [2011-03-05]. PMID 4930061. (原始內容存檔於2020-07-24) (英語). 
  26. ^ Thomas W. O'Brien. Occurrence of Active 80S Ribosomes in Subcellular Particles in the Mitochondrial Fraction of Fetal Bovine Liver (PDF). the Journal of Cell Biology. 1979-05-01, 53 (2): 590–594 [2011-03-06]. PMC 2108128 . (原始內容存檔 (PDF)於2021-06-29) (英語). 
  27. ^ Nissen P, Hansen J, Ban N, Moore P, Steitz T. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000-08-11, 289 (5481): 920–929 [2011-03-05]. doi:10.1126/science.289.5481.920. (原始內容存檔於2015-09-24) (英語). 
  28. ^ 28.0 28.1 Ban N, Nissen P, Hansen J, Moore P, Steitz T. The complete atomic structure of the large ribosomal subunit at 2.4 ångström resolution. Science. 2000-08-11, 289 (5481): 905–920 [2011-03-08]. PMID 10937989. doi:10.1126/science.289.5481.905. (原始內容存檔於2015-09-24) (英語). 
  29. ^ 29.0 29.1 Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A. Structure of functionally activated small ribosomal subunit at 3.3 Åresolution. Cell. 2000, 102 (5): 615–23. PMID 11007480. doi:10.1016/S0092-8674(00)00084-2. 
  30. ^ Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V. Structure of the 30S ribosomal subunit. Nature. 2000-09, 407 (6802): 327–39. PMID 11014182. doi:10.1038/35030006. 
  31. ^ Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V. Structure of the 30S ribosomal subunit.. Nature. 2000-09-21, 407 (6802): 327–339 [2011-03-08]. PMID 11014182. doi:10.1038/35030006. (原始內容存檔於2016-10-02) (英語). 
  32. ^ 2009年諾貝爾化學獎頁面存檔備份,存於互聯網檔案館),諾貝爾基金會。
  33. ^ Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF. Crystal structure of the ribosome at 5.5 ångström resolution.. Science. 2001-05-04, 292 (5518): 883–896 [2011-03-08]. PMID 11283358. doi:10.1126/science.1060089. (原始內容存檔於2015-09-24) (英語). 
  34. ^ Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH. Structures of the bacterial ribosome at 3.5 ångström resolution.. Science. 2005-11-04, 310 (5749): 827–834 [2011-03-09]. PMID 16272117. doi:10.1126/science.1117230. (原始內容存檔於2015-09-24) (英語). 
  35. ^ Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL 3rd, Ban N, Frank J. Structure of the E. coli protein-conducting channel bound to a translating ribosome.. Nature. 2005-11-17, 438 (7066): 318–324 [2011-03-09]. PMID 16292303. doi:10.1038/nature04133. (原始內容存檔於2017-07-02) (英語). 
  36. ^ Selmer, M., Dunham, C.M., Murphy, F.V IV, Weixlbaumer, A., Petry S., Kelley, A.C., Weir, J.R. and Ramakrishnan, V. Structure of the 70S ribosome complexed with mRNA and tRNA.. Science. 2006-09-26, 313 (5795): 1935–1942 [2011-03-09]. PMID 16959973. doi:10.1126/science.1131127. (原始內容存檔於2015-09-24) (英語). 
  37. ^ Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements.. Cell. 2006-09-22, 126 (6): 1065–1077 [2011-03-09]. PMID 16962654. doi:10.1016/j.cell.2006.08.032. (原始內容存檔於2014-01-11) (英語). 
  38. ^ Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. Structural basis for messenger RNA movement on the ribosome.. Nature. 2006-11-26, 444 (7117): 391–394 [2011-03-09]. PMID 17051149. doi:10.1038/nature05281. (原始內容存檔於2015-10-25) (英語). 
  39. ^ Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011-02, 334 (6062): 1524–1529 [2014-03-23]. PMID 22096102. doi:10.1126/science.1212642. (原始內容存檔於2012-02-06). 
  40. ^ Hillebrand A, Wurm R, Menzel A, Wagner R. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem. 2005-06, 386 (6): 523-534 [2011-02-19]. PMID 16006239. doi:10.1515/BC.2005.062. (原始內容存檔於2020-04-16) (英語). 
  41. ^ 吳光耀. 精英教案. 北京安定門外黃寺大街乙一號: 軍事誼文出版社. 2005年6月: 1057–1058. ISBN 7-80150-306-6 (中文(簡體)). 
  42. ^ 沈同、王鏡岩、趙邦悌. 生物化学(下册). 上海: 高等教育出版社. 1980年12月: 670. ISBN 9787040110890 (中文(簡體)). 
  43. ^ Görisch H, Goss DJ, Parkhurst LJ. Kinetics of ribosome dissociation and subunit association studied in a light-scattering stopped-flow apparatus. Biochemistry. 1976-12-18, 15 (26): 5743–5753 [2011-02-19]. PMID 795460. doi:10.1021/bi00671a010. (原始內容存檔於2020-04-16) (英語). 
  44. ^ Cooper HL, Bergerand SL, Braverman R. Freeribosomes in physiologically nondividing cells. Human peripheral lymphocytes.. The Journal of Biological Chemistry. 1976-08-25, 251 (16): 4891–4900 [2011-03-09]. PMID 956167. (原始內容存檔於2020-07-24) (英語). 
  45. ^ 吳光耀等. 精英教案 基础生物学教程. 北京安定門外黃寺大街乙一號: 軍事誼文出版社. 2005: 1033–1035. ISBN 7-80150-306-6 (中文(簡體)). 
  46. ^ 陳建民、卓忠隆. 從酵母菌的醣化作用到哺乳細胞的寡醣轉移酶 (PDF). 生物醫學. 2009, 2 (1): 76–89. (原始內容 (PDF)存檔於2015-05-08) (中文(繁體)). 
  47. ^ Harvey Lodish; et al. 4.5. Stepwise Formation of Proteins on Ribosomes .. Molecular cell biology. New York: Scientific American Books. 1999 [2011-03-18]. ISBN 0-7167-3136-3. (原始內容存檔於2019-09-13) (英語). 
  48. ^ J Brosius, M L Palmer, P J Kennedy, and H F Noller. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. (PDF). Proc Natl Acad Sci USA. 1978-10-10, 75 (10): 4801–4805 [2011-02-24]. PMID 368799. (原始內容存檔 (PDF)於2015-09-24) (英語). 
  49. ^ Barciszewska MZ, Szymański M, Erdmann VA, Barciszewski J. Structure and functions of 5S rRNA.. Acta Biochim. 2001, (48): 191–198 [2011-03-10]. PMID 11440169. (原始內容存檔於2020-04-10) (英語). 
  50. ^ 50.0 50.1 50.2 核糖体相关信息1. (原始內容存檔於2011年1月11日). 
  51. ^ 51.0 51.1 核糖体相关信息2. [2011-02-24]. (原始內容存檔於2008-07-24). 
  52. ^ 52.0 52.1 王鏡岩、朱聖庚、徐長法. 生物化学第三版. 北京市西城區德外大街4號: 高等教育出版社. 2002年: 474 [2011年2月9日]. ISBN 7-04-011088-1 (中文(簡體)). 
  53. ^ Bruce Alberts; et al. The Molecular Biology of the Cell, fourth edition.. Garland Science. 2002: 808. ISBN 0-8153-3218-1 (英語). 
  54. ^ O'Brien, T.W. The General Occurrence of 55S Ribosomes in Mammalian Liver Mitochondria. (PDF). J. Biol. Chem. 1971-05-25, 245 (10): 3409–3417 [2011-03-07]. PMID 4930061. (原始內容存檔 (PDF)於2020-07-24) (英語). 
  55. ^ 楊斌、郝飛. 线粒体核糖体蛋白与线粒体疾病. 中國優生與遺傳雜誌. 2005, (7) [2011-02-25]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  56. ^ 56.0 56.1 56.2 核糖体次單元结构. [2011-03-14]. 
  57. ^ 57.0 57.1 聶劍出、吳國利、張翼伸、楊紹鍾、劉鴻銘. 生物化学简明教程. 北京市東城區沙灘后街55號: 高等教育出版社. 2002年: 275–276. ISBN 7-04-007259-9 (中文(簡體)). 
  58. ^ 陳初光. 核糖体肽链输出通道对基因表达的调控作用. 國外醫學·分子生物學分冊. 2002, (6) [2011-02-24]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  59. ^ Denis L.J. Lafontaine & David Tollervey. The function and synthesis of ribosomes. Nature Reviews Molecular Cell Biology. 2001, 2 (7): 514–520 [2011-02-25]. PMID 11433365. doi:10.1038/35080045. (原始內容存檔於2017-07-07) (英語). 
  60. ^ Gabriela Ring, Paola Londei & Jerry Eichler. Protein biogenesis in Archaea: addressing translation initiation using an invitro protein synthesis system for Haloferaxvolcanii. FEMS Microbiol Lett. 2007-05, 270 (1): 34–41 [2011-03-16]. PMID 17286573. doi:10.1111/j.1574-6968.2007.00649.x. (原始內容存檔於2020-04-10) (英語). 
  61. ^ 蔣達和. 真核翻译因子与蛋白质生物合成. 生物化學與生物物理進展. 1992, (6) [2011-02-22]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  62. ^ 郭鵬、張立強 、靜國忠. 蛋白质生物合成的第四步:翻译终止后复合物的解体. 生物化學與生物物理進展. 2005, (6) [2011-02-22]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  63. ^ H. G. Gassen 羅迪安. 核糖体在蛋白质生物合成中的功能. 遺傳工程. 1984, (1) [2011-02-22]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  64. ^ Allen, G. S. and Frank, J. Structural insights on the translation initiation complex: ghosts of a universal initiation complex. Molecular Microbiology. 2007-02, 63 (4): 941–950 [2011-02-20]. PMID 17238926. doi:10.1111/j.1365-2958.2006.05574.x. (原始內容存檔於2015-07-18) (英語). 
  65. ^ Shine J, Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975-05-06, 254 (5495): 34–38 [2011-02-19]. PMID 803646. doi:10.1038/254034a0. (原始內容存檔於2012-06-01) (英語). 
  66. ^ Angelita Simonetti, Stefano Marzi, Alexander G. Myasnikov, Attilio Fabbretti, Marat Yusupov, Claudio O. Gualerzi & Bruno P. Klaholz. Structure of the 30S translation initiation complex. Nature. 2008-09-18, 455 (7211): 416–420 [2011-02-20]. PMID 18758445. doi:10.1038/nature07192. (原始內容存檔於2010-03-05) (英語). 
  67. ^ 段瑞峰、李剛. 细胞内部核糖体进入位点研究进展. 生物技術通訊. 2004, (5) [2011-02-22]. (原始內容存檔於2020-04-16) (中文(簡體)). 
  68. ^ 李穎、馮建生. 真核生物mRNA的帽结构与帽结合蛋白. Life Science Research. 1999, 3 (4) [2011-02-19]. (原始內容存檔於2015-05-09) (中文(簡體)). 
  69. ^ 徐飛虎、許寶青. 真核细胞中无义介导的mRNA降解. 細胞生物學雜誌. 2008, 30 (1) [2011-02-20]. (原始內容存檔於2015-07-04) (中文(簡體)). 
  70. ^ Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes.. Cell. 1986-01-31, 44 (2): 283–292 [2011-03-16]. PMID 3943125. (原始內容存檔於2020-04-16) (英語). 
  71. ^ M Kozak. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles.. Microbiol Rev. 1983-03, 47 (1): 1–45 [2011-03-16]. PMID 6343825. (原始內容存檔於2021-11-08) (英語). 
  72. ^ 72.0 72.1 於長春. 真核生物多肽链的延伸. 生命的化學. 1995, (4) [2011-02-21]. (原始內容存檔於2020-07-24) (中文(簡體)). 
  73. ^ 周冰、曹誠、劉傳暄. 翻译延伸因子1A的研究进展. 生物技術通訊. 2007, (2) [2011-02-24]. (原始內容存檔於2020-04-10) (中文(簡體)). 
  74. ^ 潘珉、曹槐、劉次全. rRNA——行使核糖体功能的主体. 生命的化學. 2004, (3) [2011-02-27]. (原始內容存檔於2020-04-10) (中文(簡體)). 
  75. ^ 李世博、周永行、章俊斌、程曉鋒、席真. Sparsomycin的手性对核糖体移位的影响. 第六屆全國化學生物學學術會議論文摘要集. 2009 [2011-02-27]. (原始內容存檔於2020-11-06). 
  76. ^ 鄒友平、陳勝文. 核糖体内多肽链翻译终止机制. 生命的化學. 2002, (2) [2011-02-22]. (原始內容存檔於2020-08-03). 
  77. ^ Weaver, Robert F. Molecular Biology. New York, NY: McGraw-Hill. 2005: 616-621 [2011]. ISBN 0072846119 (英語). 
  78. ^ Capecchi, M. R. Polypeptide chain termination in vitro: Isolation of a release factor. Proc. Natl. Acad. Sci. 1967-09, 58 (3): 1144–1151 [2011-03-16]. PMID 5233840. (原始內容存檔於2021-08-03) (英語). 
  79. ^ Scolnick, E., R. Tompkins, T. Caskey, and M. Nirenberg. Release factors differing in specificity for terminator codons. Proceedings of National Academy of Sciences USA. 1968-10, 61 (2): 768–772 [2011-03-16]. PMID 4879404. (原始內容存檔於2020-04-16) (英語). 
  80. ^ Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 2002-12-15, 372 (6507): 701–703. PMID 7990965. doi:10.1038/372701a0 (英語). 
  81. ^ Kisselev L, Ehrenberg M, Frolova L. Termination of translation: interplay of mRNA, rRNAs and release factors?. EMBO J. 2003-01-15, 22 (2): 175–182 [2011-03-16]. PMC 140092 . PMID 12514123. doi:10.1093/emboj/cdg017. (原始內容存檔於2020-04-10) (英語). 
  82. ^ 張伊平、祁國榮. 联读翻译的几种方式. 生命的化學. 1983, (6) [2011-02-22]. (原始內容存檔於2020-08-08) (中文(簡體)). 
  83. ^ 張立強、郭鵬、張洪傑、靜國忠. 结构域间相互作用导致的大肠杆菌核糖体再循环因子(RRF)的协同去折叠及其对功能的提示. 第十次中國生物物理學術大會論文摘要集. 2006 [2011-02-27]. (原始內容存檔於2021-01-14) (中文(簡體)). 
  84. ^ Recht MI, Douthwaite S, Puglisi JD. Basis for prokaryotic specificity of action of aminoglycoside antibiotics.. EMBO J. 1999-01-01, 18 (11): 3133–3138 [2011-03-17]. PMC 1171394 . PMID 10357824. doi:10.1093/emboj/18.11.3133. (原始內容存檔於2020-04-16) (英語). 
  85. ^ Denslow ND, O'Brien TW. Susceptibility of 55S mitochondrial ribosomes to antibiotics inhibitory to prokaryotic ribosomes, lincomycin, chloramphenicol and PA114A.. Biochem Biophys Res Commun. 1974-03-15, 57 (1): 9–16 [2011-03-17]. PMID 4597411. (原始內容存檔於2020-04-10) (英語). 

外部連結 編輯