1257年萨马拉斯火山爆发

引發火山冬天的火山爆發

公元1257年左右,位于龙目岛萨马拉斯火山印尼语Samalas)发生大规模爆发火山爆发指数可能达到7级[a],是全新世期间最猛烈的火山爆发之一。爆发产生了破火山口,其中形成了塞加拉阿纳克湖,此后的火山活动在破火山口形成了更多的火山锥,包括目前仍活跃的巴鲁贾里(Barujari)火山锥。

1257年萨马拉斯火山爆发
萨马拉斯火山与林贾尼火山
火山萨马拉斯火山
日期1257年
类型超普林尼式
位置印度尼西亚龙目岛
8°24′36″S 116°24′30″E / 8.41000°S 116.40833°E / -8.41000; 116.40833
VEI7[1]
龙目岛北部的萨马拉斯火山和林贾尼火山

火山爆发产生的喷发柱升上大气层数十公里,而火山碎屑流则掩埋了龙目岛的大部分地区,更波及邻近的松巴哇岛,摧毁了包括包括龙目岛王国首都在内的聚落。爆发的火山灰最远落到了340公里外的爪哇岛;总共有超过10立方公里的岩石和火山灰被堆积。

火山爆发产出气溶胶并进入大气,阻挡太阳辐射到达地面,引致了火山冬天,导致了欧洲等地饥荒和农作物失收;但气温变化的确切规模及其影响仍有争议。这次爆发可能是小冰期的诱因之一。

起初,科学家在研究各地冰芯时发现,1257年左右冰芯中硫酸盐的沉积量大幅增加,证明当时发生了大规模火山爆发,但当时火山爆发的地点尚未确定。2013年,科学家透过当地目击者写在棕榈叶上的历史记录,证实萨马拉斯火山在1257年爆发。

地质背景

编辑

萨马拉斯火山Samalas),又称老林贾尼火山Rinjani Tua[4],是现为印度尼西亚龙目岛林贾尼火山群的一部分[5],其残余构成了塞加拉阿纳克破火山口,林贾尼火山位于其东缘[4]。萨马拉斯火山爆发后,破火山口中有两座新火山形成,而林贾尼火山也仍然活跃[6]。萨马拉斯火山附近还有位于峇厘岛西部的阿贡火山巴杜尔火山布拉坦火山[7]

 
龙目岛的位置

龙目岛位于印尼巽他岛弧中的小巽他群岛[8][9][10]澳大利亚板块在当地以每年7厘米的速度[11]俯冲欧亚板块下方[9]。萨马拉斯火山和林贾尼火山的岩浆很可能来自龙目岛下方地幔楔橄榄岩[9]。根据遗留的山体推断,萨马拉斯火山在爆发前约高达4200米,高于目前亚洲热带地区最高的山峰京那巴鲁山[12],但萨马拉斯火山在爆发后已经比一旁的林贾尼火山要矮[13]

龙目岛最古老的地层来自渐新世中新世[5][8],当时有火山在南部出现[4][5]。萨马拉斯火山在距今12,000年前形成,而林贾尼火山则在距今11,940±40年前至距今2,550±50年前之间形成[8],并于距今5,990±50年前至距今2,550±50年前之间爆发[14]。林贾尼火山和萨马拉斯火山的活动一直持续到1257年之前约500年[15]。萨马拉斯火山主要由英安岩构成,以重量计二氧化硅的含量为62-63%[8],下方的地壳厚约20公里,而贝尼奥夫带最深约有164公里[9]

爆发

编辑
 
火山爆发后形成的塞加拉阿纳克湖

1257年萨马拉斯火山爆发能通过分析其遗留的沉积物[14]和历史记录重建[16]。根据冰芯数据[17]火山喷发碎屑的型态[18],萨马拉斯火山最有可能在1257年的9月爆发(误差约为2-3个月)[18],但也有可能在翌年爆发[19]

阶段

编辑

萨马拉斯火山爆发的阶段分为第一阶段(潜水蒸气喷发和岩浆喷发)、第二阶段(火山碎屑流和准岩浆型火山喷发)、第三阶段(普林尼式喷发)和第四阶段(火山碎屑流)[20]。第一和第三阶段的单独持续时间无法得知,但合计持续12至15小时(不包括第二阶段)[21]。第一阶段产生的喷发柱高度达到39-40公里[22],到了第三阶段则达到了38-43公里[21],已足以让二氧化硫光分解作用影响[23]

过程

编辑

在一开始的潜水蒸气喷发阶段,龙目岛西北部超过400平方公里的范围内,有3厘米厚的火山灰落下。在随后的岩浆爆发阶段,富含岩屑的浮石大量落下,在龙目岛东部和峇厘岛的逆风处累积达到8厘米[14]。紧接着火山砾和火山灰落下,伴随着被部分限制在火山西侧山谷内的火山碎屑流。部分火山灰的沉积被火山碎屑流侵蚀,形成沟槽。火山碎屑流越过峇厘海,到达火山西北方的吉利群岛[24]和龙目岛以东的松巴哇岛西部[16],而浮石块可能淹没了龙目岛和松巴哇岛之间的阿拉斯海峡[25]。由于火山爆发的沉积物显示熔岩与水之间有反应,这次喷发可能属于准岩浆型火山喷发。之后浮石又落下了三次,覆盖的区域比之前更广[24]。浮石在松巴哇岛向东逆风落下,最远达61公里,厚度达7厘米[26]

随后,喷发柱塌陷,可能再次引起了火山碎屑流。此时,喷发转变为喷泉状,破火山口开始形成。火山碎屑流受龙目岛的地势影响而转向,填满了岛上的山谷,在龙目岛扩散开,烧毁了岛上的植被。火山碎屑流与空气之间的反应让更多喷发柱和火山碎屑流形成。火山碎屑流最终流入龙目岛北部和东部的海洋,产生蒸汽爆炸,海滩上形成了浮石锥[26]。火山碎屑流又在萨马拉斯火山南坡分成两支,一支向东流向阿拉斯海峡,一支向西流向至峇厘海峡[27]。火山碎屑流掩埋了珊瑚礁,越过阿拉斯海峡抵达松巴哇岛[28]。火山碎屑流在龙目岛的体积达到了29立方公里[29],厚度达35米,最远流到了火山的25公里以外[30]。火山碎屑流以及其他沉积物扩张了龙目岛[31],掩埋了河谷,新的河流系统在沉积物上形成形成[32]

火山岩和火山灰

编辑

火山爆发产生的火山岩覆盖了峇厘岛、龙目岛和松巴哇岛的部分地区[11]灰状火山喷发碎屑最远落在爪哇岛,被称为萨马拉斯火山喷发碎屑[26][33]。爪哇岛上的火山也被火山灰覆盖,当中默拉皮火山累积了2-3厘米,布罗莫火山累积了15厘米,伊真火山累积了22厘米[34],峇厘岛的阿贡火山累积了12-17厘米[35],距离萨马拉斯火山340公里的湖泊也累积了3厘米的火山灰[26]。大部分火山灰落在萨马拉斯火山的西南偏西[36],总体积可能达到32-39立方公里[37]。火山灰在第一阶段覆盖了7,500平方公里的面积,在第三阶段更覆盖了110,500平方公里的面积,达到了普林尼式喷发和超普林式喷发的强度[38]

萨马拉斯火山喷发产生的细颗粒奶油色浮石已被用作峇厘岛地质年代的标记[39]。远在13,500公里以外的冰芯也有萨马拉斯火山的喷发碎屑出现[40],而在南中国海东岛的火山灰层也有可能来自萨马拉斯火山[41]。火山灰和气溶胶有可能影响了距离萨马拉斯火山较远的人类和珊瑚[42]

对萨马拉斯火山在各阶段爆发的喷出量有各种估计。第一阶段的喷出量达到12.6–13.4立方公里,而第二阶段的喷出量达到0.9-3.5立方公里[43],整个喷发的总喷出量相当于40立方公里的致密岩石[38]。火山喷出的岩浆为粗面岩,含有角闪石磷灰石辉石硫化铁斜长石及钛磁铁矿,由玄武岩岩浆分离结晶形成[44],温度约为1,000 °C[13]。是次喷发可能是由岩浆进入岩浆房或是受气泡的影响而引发的[45]

强度

编辑

这次爆发的火山爆发指数为7级[46],是目前全新世最大规模的火山爆发之一[47],强度接近公元前7世纪的库里尔斯科耶湖喷发、公元前6世纪的马札马火山喷发[47]、约4,200年前的罗夫莱多火山喷发[48]、公元前1627至1600年之间[49]米诺斯火山爆发[47]、6世纪伊洛潘戈湖喷发,以及1815年坦博拉火山的喷发[47]。此规模的火山爆发可以对人类造成灾难性影响,造成广泛的人命伤亡[50]

破火山口

编辑

火山爆发后,一个6-7公里宽的破火山口——塞加拉阿纳克破火山口——在萨马拉斯火山的位置形成[6],其中有个200米深的火山口湖,名为塞加拉阿纳克湖[51][52]。巴鲁贾里火山锥高出湖面320米,自1847年以来已喷发15次[51]。萨马拉斯火山爆发前可能已有一火山口湖,为火山爆发提供了水,但水也有可能来自含水层[53]。在一次被人目击的山崩中[16],大约有2.1–2.9立方公里的岩石从林贾尼火山落入破火山口[54],并在面向破火山口的山山坡留下了崩塌的痕迹[13]

2003年,形成此破火山口的爆发被确认,翌年喷发体积被定为10立方公里[14]。早期研究认为,爆发发生在1210年至1300年之间。2013年,法兰克·拉维尼提出爆发发生在1257年5月至10月之间,导致了1258年的气候变化[6]。龙目岛有数个村庄是在火山碎屑流沉积上建造的[55]

研究

编辑

萨马拉斯火山喷发是透过冰芯资料发现的[56][57][58]。在1980年,科学家在来自格陵兰冰芯样本中[59][b]发现1257-1258年的冰层出现了与流纹岩火山灰沉积有关[61]硫酸盐[62]。是次爆发最初被称为“神秘喷发”[63]。起初,源头火山被认为在格陵兰附近[62],但根据冰岛的记录,1250年左右没有火山爆发的纪录。另外,在南极点玛丽·伯德地[64]和加拿大埃尔斯米尔岛钻探的冰芯中也发现了硫酸盐[65]。在萨马拉斯火山被发现之前,此硫酸盐的峰值已被用作冰芯的地层标记[66]

冰芯资料显示,1257年至1259年左右[67][68],一个大型的硫酸盐峰值出现[68],是7000年来最大,达到1815年坦博拉火山爆发的两倍[67]。2003年科学家估计这次喷发的喷出物相当于200-800立方公里的致密岩石[69],但也有观点认为这次喷发的规模可能较小,但硫含量较高[70][56]。科学家认为该火山位于环太平洋火山带[71],但其具体位置无法确定[57]汤加托富阿岛的火山爆发[72]和1256年麦地那附近的哈尔拉特·拉哈特火山英语Harrat Rahat被视为潜在的源头,但它们的爆发规模均太小,不足以让硫酸盐到达极地冰盖[73],而另一观点则认为当时有多个火山同时喷发[74]。根据故计,喷发留下的破火山口的直径有10-30公里[75],位于赤道偏北[76]

起初,1257年没有明确的气候异常纪录[77][78],但到了2000年[77],中世纪记录中的与火山爆发相关[62]的气候变化被发现[57][58]。先前,气候的变化在年轮和气候重建的数据中被发现[77]。由于沉积物扩散至全球,因此当时的气候变化是由热带的火山喷发引起[52]。2012年,因为其他潜在火山(埃尔奇琼火山基洛托阿火山塔拉威拉火山)不匹配硫酸盐的化学成分[79]、时间跨度和规模,萨马拉斯火山是源头的假说被首次提出[58]

所有房屋被摧毁和冲走,漂浮在海面上,有许多人死亡。
Babad Lombok[80]

巴黎第一大学地质学家[81]法兰克·拉维尼(Franck Lavigne[62]怀疑龙目岛上的火山就是源头[62]。2013年,通过使用放射性碳定年法测定龙目岛上树木[82][57]和龙目岛编年史(Babad Lombok),科学家确定了萨马拉斯火山就是导致了冰芯的硫酸盐和气候变化的源头[57]。龙目岛编年史写在棕榈叶上,记述了公元1300年前龙目岛发生了灾难性的火山爆发[13]。科学家透过比较冰芯中的玻璃碎片与龙目岛沉积物的化学特性,证实了影响了全球气候的就是萨马拉斯火山喷发[52]。后来发现,极地冰芯中的火山灰与萨马拉斯火山爆发产物相似,更充分地证实了上述假设[83][84]

气候影响

编辑

气溶胶与古气候学数据

编辑

南北半球的冰芯均出现与萨马拉斯火山爆发相关的硫酸盐峰值,是南半球过去1000年[85]乃至2500年规模最大的峰值[86],为喀拉喀托火山爆发的8倍[62],而在北半球则仅次于1783-1784年拉基火山爆发[85],更成为了地层的时间标记[87]。玻利维亚伊伊马尼山的冰芯出现喷发产生的[88]和硫酸盐峰值[89],其硫含量是1991年皮纳图博火山爆发的约十倍[90],而斯瓦尔巴也有萨马拉斯火山爆发的硫酸盐沉积[91]

此外,喷发产生的气溶胶有机会从平流层中分离了大量的铍-10,产生和太阳活动变化相似的效果[92]。喷发释放的二氧化硫量估计有158±1200万吨[93]。与萨马拉斯火山相比,坦博拉火山爆发可能释出了更多硫[94],但萨马拉斯将更多火山灰注入了平流层[95]。火山爆发后,尘埃可能需要数周至数月的时间才能抵较远的地方[71]。火山爆发将气溶胶注入大气,地表的阳光减少,温度降低,导致农作物失收[96]南极洲冰穹C的冰芯显示,萨马拉斯火山喷发所产生的高浓度气溶胶可能持续了三年或以上[97],其浓度之高可能足以遮挡月食时的月亮[98][99][100]

树木方面,火山喷发也导致了树木的年轮受霜冻破坏[101]。1258年至1262年期间,蒙古的树木生长放慢[102],而加拿大西伯利亚西北部的树木年轮分别在1258年和1259年变浅[103],美国内华达山脉的树木年轮变薄[104],而挪威和瑞典的树木年轮更变薄了约十年[105]。此外,朝鲜半岛[106]附近的海面和中国东北部都出现降温[107]、越南出现非常潮湿的季候风[82]、北半球多地(包括泰国南部[108])发生旱灾[109]。根据模拟和年轮数据,降温可能持续了4-5年[110]。火山爆发也导致瑞典北部有硫酸落下,可能影响了当地的沼泽[111]

萨马拉斯火山喷发也可能导致大气中二氧化碳的浓度短暂下降[74],而此现象也在皮纳图博火山喷发后被观察得到,有数个可能的原因,包括低温的海洋吸收了更多的二氧化碳、或是碳在生物圈中堆积等等[112]

萨马拉斯火山喷发对气候的影响在不同树木年轮的纪录并不一致[113][114],其对气温的影响也有限[115]。根据气候模型推算,萨马拉斯火山喷发可能让全球气温下降摄氏2度,与气候代理的数据并不吻合[116][117];而根据全球气候模式推算,最显著的降温在1258年至1261年发生[117]。可是,因为模型会错误地假定光深度会随着火山喷发产出的硫而增加[118][119],气候模型经常高估了火山喷发对气候的影响[120]。此外,在萨马拉斯火山喷发前可能出现的厄尔尼诺现象再进一步限制了降温[121]

在萨马拉斯火山喷发和小冰期的共同影响下,海冰冰帽有所增长[122],而阿尔卑斯山喜马拉雅山脉太平洋西北地区安第斯山脉巴芬岛的冰川也有扩大[123][124],而这又加强和延长了气候的变化[111][125]

模拟影响

编辑

根据2003年的模拟,火山喷发让北半球夏季的气温下降摄氏0.46度,南半球则下降了摄氏0.69度[77];更新的气候代理数据则显示地球的气温在1258年下降了摄氏0.7度,隔年又下降了摄氏1.2度,但全球各地降温的幅度不一[126],而降雨量和蒸发量均有减少[127]。海面温度也下降了摄氏0.3至2.2度[128],影响了洋流和海洋盐度[129]。火山喷发也将氯和溴等小量卤素带到平流层,分解了大气中的臭氧[63][130],而这有可能导致更多紫外线到达地球表面,让地球人口出现免疫抑制,令流行病爆发[131]

各地气候影响

编辑

1257年萨马拉斯火山爆发、1452年或1453年的一次火山爆发英语1452/1453 mystery eruption1815年坦博拉火山爆发均导致了2千纪最显著的降温,比小冰期更显著[132]。受到含硫气溶胶影响[133][134],1257年至1258年的冬天比正常偏暖[135],使法国堇菜提早开花[133],但随后的夏天比平常冷[136]

萨马拉斯火山在一段异常温暖时期之后爆发[137][138],此前的1108年、1171年和1230年都有火山爆发,造成气候波动[139]。而根据迪斯科岛冰碛数据[140],随后的1276年和1286年均有火山爆发[141],进一步扰乱了气候[142]。有理论认为,这些火山活动加上冰层扩大形成了正反馈,在无需受太阳活动影响也能导致小冰期[143][144],但此观点有争议[145]

根据推断,萨马拉斯火山爆发还引起了强烈的南极涛动[146],影响南半球的温度和降水[147]。另外,火山爆发也可能影响了厄尔尼诺-南方涛动现象[148][148]。火山爆发后隔年美国西部天气较为潮湿,可能代表厄尔尼诺现象出现[149][150],但在巴尔米拉环礁珊瑚的数据却没有厄尔尼诺现象出现的证据[151]。火山爆发使大气温度结构改变,可能让热带气旋的强度短暂下降[152],但根据大西洋的古风暴学研究,热带气旋的出现频率并没下降[153]。火山爆发也让大西洋经向翻转环流减弱[154],有机会促进了小冰期的形成[155]

受到南方涛动和北大西洋涛动的影响[156],全球的海平面因为火山爆发而有所下降,十字军国家一带的海平面更下降了约半米[157]。全球的海平面在1250年至1400年间逐渐回复到先前水平[158]

另外,火山爆发也影响了东亚季候风[159]、太平洋经向模[160]北极涛动[134]大西洋多年代际振荡[161]碳循环[162],又导致了欧洲水汽供应减少[163]δ18O异常[164]热带辐合带南移[165]、印度季候风减弱[166]等等。

受邻近海洋的调节[167]阿拉斯加等地受火山爆发的影响较小[168],而美国西部的干旱被中断[169],当地树木生长也未受低温影响[170]。1259年,西欧和美洲西岸的天气温和[126],而中欧的夏季雨量也没有变化[171][172]

对人类的影响

编辑

萨马拉斯火山爆发在1257年至1258年在全球造成灾难[52],当中包括饥荒,但其对社会的影响仍为完全确定[96]

龙目岛和峇厘岛

编辑

火山爆发时,当今印尼的中、西部被不同的王国统治[50],但它们对萨马拉斯火山爆发和其影响的记载甚少[173]。根据龙目岛编年史(Babad Lombok)记载,龙目岛上的村庄在13世纪中期被火山灰和岩浆摧毁[57],而另外两本历史书(Babad SembalunBabad Suwung)也描述了该火山爆发[174]。这些书本就是是“萨马拉斯”(Samalas)这个名称的来源[175]

林贾尼火山崩塌,萨马拉斯火山倒塌,随后大量碎屑伴随着巨响留下,摧毁了帕马坦(Pamatan)。所有房屋被摧毁和冲走,漂浮在海面上,有许多人死亡。在七天内,大地震动,人们在勒嫩(Leneng)被困,被巨砾卷走,他们逃走,有人爬上山。

——龙目岛编年史[176]

帕马坦是当时统治龙目岛的王国的首都,毁于火山爆发,并从历史纪录中消失。根据爪哇语文献,龙目岛的王室成员在此灾难中幸存[177],文献又提到了灾后重建和复原工作[178],至于王国是否因此灭亡则尚未明确[173]。有数以千计的人在火山爆发中遇难[13],但部分民众在火山爆发前可能已经逃离[179]。火山爆发后,龙目岛和邻近的峇厘岛的文献纪录均有减少[180][181],而那里的人口也可能有所减少[182],让爪哇岛信诃沙里王国得以在1284年轻易占领峇厘岛[133][181]。龙目岛可能经过了一个世纪才从火山爆发中恢复过来[183],而至今松巴哇岛西部的人口仍未恢复[184]

大洋洲

编辑

大洋洲历史纪录的年代通常不清楚,但有证据表明1250年至1300年间大洋洲(例如复活节岛)有出现危机[42]。1300年左右,由于海平面下降,太平洋各处都有聚落迁移[156]波利尼西亚人因火山造成的气候变化,往西南方移居,抵达新西兰[185]

欧洲和中东

编辑

欧洲的编年史提到了1258年有异常天气出现[186]。英国和法国出现雾[187],而当年夏天较冷且雨量较多,造成洪水并导致农作物失收[58][188],俄罗斯则在1259年的夏天结[103]。欧洲和中东在1258年至1259年还出现了如天空颜色转变、风暴、低温等等的极端天气[189],远至北非的农作物也受波及[190]。欧洲受天气异常影响出现饥荒,随后爆发流行病[191][192][82],但饥荒并没有1315年至1317年的严重[193]。英国、法国和意大利的谷物价格上涨[189][194][195],而英格兰、中东和意大利则爆发斑疹伤寒等传染病[194][196]。1258年至1259年的冬天并未出现太多异常天气,但1260年至1261年的冬天却非常严寒[197]

英格兰和意大利

编辑
肿胀、腐烂的尸体躺在猪圈、粪堆和泥泞的街道上,五至六个一组。
马修·帕里斯[198]

伦敦发生饥荒,可能和火山爆发有关[46],但当地在在火山爆发之前已经有收成问题[199][200][201],时值英格兰国王亨利三世大贵族之间的政治危机[202]。伦敦有约15,000至20,000人饿死,死者被埋在市中心的万人冢[82]。根据圣奥尔本斯马修·帕里斯英语Matthew Paris的描述,当时天气一时寒冷,一时大雨,多人死亡[198]。为了缓解饥荒,粮食须从欧洲大陆进口[203]

意大利受火山爆发影响的时间比欧洲大部分地区要晚一年[204]。1258年,意大利出现暴雨,农作物失收[205],翌年,有寒潮抵达意大利,多人死亡[206]。为了控制粮食危机,博洛尼亚锡耶纳尝试收购和补贴粮食,并禁止粮食出口[207]。锡耶纳又与西西里国王建立外交关系来缓解危机[208],而博洛尼亚则出现了政治危机[209]帕尔马派官员在星期六关闭市场[210],又禁止食物出口[211],却导致帕尔马的执政官被推翻[212]。至于当时正在发生政治危机的帕维亚[213]和意大利北部的科莫就采取了多项措施来确保粮食供应[214][215][216]。1257年至1260年,佩鲁贾粮食短缺,市政府对社会的管控增加[217]

长期影响

编辑

火山爆发导致北大西洋降温和海冰扩大,限制了格陵兰和冰岛的航运和农业发展,而诺斯人也撤离了格陵兰[218],影响了当地社会[219]。另外,由于冬天气温下降,农业受严重影响,畜牧的突厥人的影响力变大,可能导致东罗马帝国失去对安纳托利亚的控制权[220]

北美洲

编辑

火山爆发后,北美洲有聚落被废弃[221],其中阿那萨吉人离开了科罗拉多高原的北部[222]。萨马拉斯火山爆发正值当地人口因少雨和低温而减少的时期[223],而此爆发可能就是成因之一[224][222]

南美洲

编辑

受火山爆发影响,南美洲阿尔蒂普拉诺高原的气温下降,天气也变得干燥。尽管如此,乌尤尼盐沼科伊帕萨湖的雨水灌溉农业仍有增长[225]

东亚和东南亚

编辑

萨马拉斯火山爆发也波及了东亚地区[82]。根据吾妻镜一书,日本的稻田被低温而潮湿的天气破坏[226],加剧了当地的饥荒[227][193]。火山爆发在朝鲜半岛造成影响,再加上蒙古入侵高丽,促使武臣政权及其独裁者崔竩垮台[228]。火山爆发导致的季候风异常,导致了吴哥窟的人口下降[229]

蒙古帝国

编辑

火山爆发增加了黎凡特地区的降雨,可能促使了蒙古入侵叙利亚[230],但气候恢复正常后,当地能承载的牲畜量减少,反而削弱了蒙古军队的效率[231],最终蒙古在阿音札鲁特战役战败[232]。蒙古帝国当时也出现了饥荒、流行病和旱灾[156],有可能影响了拖雷家族内战[233],让忽必烈的势力崛起[234]

中亚

编辑

火山爆发扰乱了中亚地区的气候,当地气温先跌后升[235],有利于鼠疫耶尔森菌的传播和变种[236],最终导致黑死病的菌种出现[237],造成大爆发[238]

另见

编辑

注解

编辑
  1. ^ 火山爆发指数能衡量火山爆发强度[2],7级表示爆发至少产生100立方公里的沉积物,每千年约发生一至两次[3]
  2. ^ 于1974年钻探[60]

参考资料

编辑
  1. ^ Rinjani. 全球火山计划. 史密森尼学会. [2020-01-22]. (原始内容存档于2023-03-16). 
  2. ^ Newhall, Self & Robock 2018,第572页.
  3. ^ Newhall, Self & Robock 2018,第573页.
  4. ^ 4.0 4.1 4.2 Rinjani Dari Evolusi Kaldera hingga Geopark. Geomagz. 2016-04-04 [2018-03-03]. (原始内容存档于2018-02-22) (印度尼西亚语). 
  5. ^ 5.0 5.1 5.2 Métrich et al. 2018,第2258页.
  6. ^ 6.0 6.1 6.2 Rachmat et al. 2016,第109页.
  7. ^ Fontijn et al. 2015,第2页.
  8. ^ 8.0 8.1 8.2 8.3 Rachmat et al. 2016,第108页.
  9. ^ 9.0 9.1 9.2 9.3 Rachmat et al. 2016,第107页.
  10. ^ Mutaqin et al. 2019,第338–339页.
  11. ^ 11.0 11.1 Mutaqin et al. 2019,第339页.
  12. ^ Corlett, Richard T., Physical geography, The Ecology of Tropical East Asia (Oxford University Press), 2019-06-27: 26–61 [2021-12-10], ISBN 978-0-19-881701-7, doi:10.1093/oso/9780198817017.003.0002, (原始内容存档于2021-12-10) (英语) 
  13. ^ 13.0 13.1 13.2 13.3 13.4 Lavigne et al. 2013,第16743页.
  14. ^ 14.0 14.1 14.2 14.3 Vidal et al. 2015,第3页.
  15. ^ Métrich et al. 2018,第2263页.
  16. ^ 16.0 16.1 16.2 Malawani et al. 2022,第6页.
  17. ^ Crowley, T. J.; Unterman, M. B. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth System Science Data. 2013-05-23, 5 (1): 193. Bibcode:2013ESSD....5..187C. doi:10.5194/essd-5-187-2013 . 
  18. ^ 18.0 18.1 Stevenson et al. 2019,第1547页.
  19. ^ Büntgen et al. 2022,第532页.
  20. ^ Vidal et al. 2015,第21–22页.
  21. ^ 21.0 21.1 Vidal et al. 2015,第18页.
  22. ^ Vidal et al. 2015,第17–18页.
  23. ^ Whitehill, A. R.; Jiang, B.; Guo, H.; Ono, S. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols. Atmospheric Chemistry and Physics. 2015-02-20, 15 (4): 1861. Bibcode:2015ACP....15.1843W. doi:10.5194/acp-15-1843-2015 . 
  24. ^ 24.0 24.1 Vidal et al. 2015,第5页.
  25. ^ Mutaqin & Lavigne 2019,第5页.
  26. ^ 26.0 26.1 26.2 26.3 Vidal et al. 2015,第7页.
  27. ^ Malawani et al. 2023,第2102页.
  28. ^ Mutaqin et al. 2019,第344页.
  29. ^ Vidal et al. 2015,第17页.
  30. ^ Lavigne et al. 2013,第16744页.
  31. ^ Malawani et al. 2023,第2110页.
  32. ^ Mutaqin et al. 2019,第348页.
  33. ^ Alloway et al. 2017,第87页.
  34. ^ Alloway et al. 2017,第90页.
  35. ^ Vidal et al. 2015,第8页.
  36. ^ Vidal et al. 2015,第12页.
  37. ^ Vidal et al. 2015,第16页.
  38. ^ 38.0 38.1 Vidal et al. 2015,第19页.
  39. ^ Fontijn et al. 2015,第8页.
  40. ^ Stevenson, J. A.; Millington, S. C.; Beckett, F. M.; Swindles, G. T.; Thordarson, T. Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash. Atmospheric Measurement Techniques. 2015-05-19, 8 (5): 2075. Bibcode:2015AMT.....8.2069S. doi:10.5194/amt-8-2069-2015 . 
  41. ^ Yang, Zhongkang; Long, Nanye; Wang, Yuhong; Zhou, Xin; Liu, Yi; Sun, Liguang. A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea. Journal of Earth System Science. 2017-02-01, 126 (1): 5. Bibcode:2017JESS..126....7Y. ISSN 0253-4126. doi:10.1007/s12040-016-0790-y  (英语). 
  42. ^ 42.0 42.1 Margalef et al. 2018,第5页.
  43. ^ Vidal et al. 2015,第14页.
  44. ^ Vidal et al. 2016,第2页.
  45. ^ Métrich et al. 2018,第2278页.
  46. ^ 46.0 46.1 Whelley, Patrick L.; Newhall, Christopher G.; Bradley, Kyle E. The frequency of explosive volcanic eruptions in Southeast Asia. Bulletin of Volcanology. 2015-01-22, 77 (1): 3. Bibcode:2015BVol...77....1W. PMC 4470363 . PMID 26097277. doi:10.1007/s00445-014-0893-8. 
  47. ^ 47.0 47.1 47.2 47.3 Lavigne et al. 2013,第16745页.
  48. ^ Fernandez-Turiel, J. L.; Perez–Torrado, F. J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Carracedo, J. C.; Rejas, M.; Lobo, A.; Osterrieth, M.; Carrizo, J. I.; Esteban, G.; Gallardo, J.; Ratto, N. La gran erupción de hace 4.2 ka cal en Cerro Blanco, Zona Volcánica Central, Andes: nuevos datos sobre los depósitos eruptivos holocenos en la Puna sur y regiones adyacentes. Estudios Geológicos. 2019-05-08, 75 (1): 26. doi:10.3989/egeol.43438.515 . 
  49. ^ Lavigne et al. 2013,Table S1.
  50. ^ 50.0 50.1 Alloway et al. 2017,第86页.
  51. ^ 51.0 51.1 Vidal et al. 2015,第2页.
  52. ^ 52.0 52.1 52.2 52.3 Reid, Anthony. Revisiting Southeast Asian History with Geology: Some Demographic Consequences of a Dangerous Environment. Bankoff, Greg; Christensen, Joseph (编). Natural Hazards and Peoples in the Indian Ocean World. Palgrave Series in Indian Ocean World Studies. Palgrave Macmillan US. 2016: 33. ISBN 978-1-349-94857-4. doi:10.1057/978-1-349-94857-4_2. 
  53. ^ Vidal et al. 2015,第14–15页.
  54. ^ Roverato, Matteo; Dufresne, Anja; Procter, Jonathan (编). Volcanic Debris Avalanches. Advances in Volcanology. 2021: 40 [2024-11-27]. ISBN 978-3-030-57410-9. ISSN 2364-3277. S2CID 226971090. doi:10.1007/978-3-030-57411-6. (原始内容存档于2024-01-14) (英国英语). 
  55. ^ Lavigne, Franck; Morin, Julie; Mei, Estuning Tyas Wulan; Calder, Eliza S.; Usamah, Muhi; Nugroho, Ute. Mapping Hazard Zones, Rapid Warning Communication and Understanding Communities: Primary Ways to Mitigate Pyroclastic Flow Hazard. Advances in Volcanology. 2017: 4 [2024-11-27]. ISBN 978-3-319-44095-8. doi:10.1007/11157_2016_34. (原始内容存档于2024-06-05) (英语). 
  56. ^ 56.0 56.1 Bufanio 2022,第19页.
  57. ^ 57.0 57.1 57.2 57.3 57.4 57.5 Culprit Behind Medieval Eruption. Science. 2013-10-03, 342 (6154): 21.2–21. doi:10.1126/science.342.6154.21-b. 
  58. ^ 58.0 58.1 58.2 58.3 Lavigne et al. 2013,第16742页.
  59. ^ Oppenheimer 2003,第417页.
  60. ^ Langway, Chester C. The history of early polar ice cores (PDF). Cold Regions Science and Technology. 2008, 52 (2): 28 [2019-01-29]. Bibcode:2008CRST...52..101L. doi:10.1016/j.coldregions.2008.01.001. hdl:11681/5296 . (原始内容 (PDF)存档于2016-11-18). 
  61. ^ Oppenheimer 2003,第418页.
  62. ^ 62.0 62.1 62.2 62.3 62.4 62.5 Hamilton 2013,第39页.
  63. ^ 63.0 63.1 Vidal et al. 2016,第1页.
  64. ^ Hammer, Clausen & Langway 1988,第104页.
  65. ^ Hammer, Clausen & Langway 1988,第106页.
  66. ^ Osipova, O. P.; Shibaev, Y. A.; Ekaykin, A. A.; Lipenkov, V. Y.; Onischuk, N. A.; Golobokova, L. P.; Khodzher, T. V.; Osipov, E. Y. High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica. The Cryosphere. 2014-05-07, 8 (3): 7 [2019-04-07]. Bibcode:2014TCry....8..843O. ISSN 1994-0416. doi:10.5194/tc-8-843-2014 . (原始内容存档于2019-04-07) (英语). 
  67. ^ 67.0 67.1 Auchmann, Renate; Brönnimann, Stefan; Arfeuille, Florian. Tambora: das Jahr ohne Sommer. Physik in unserer Zeit. 2015-03, 46 (2): 67. Bibcode:2015PhuZ...46...64A. S2CID 118745561. doi:10.1002/piuz.201401390 (德语). 
  68. ^ 68.0 68.1 Narcisi et al. 2019,第165页.
  69. ^ Oppenheimer 2003,第419页.
  70. ^ Oppenheimer 2003,第420页.
  71. ^ 71.0 71.1 Campbell 2017,第113页.
  72. ^ Caulfield, J. T.; Cronin, S. J.; Turner, S. P.; Cooper, L. B. Mafic Plinian volcanism and ignimbrite emplacement at Tofua volcano, Tonga. Bulletin of Volcanology. 2011-04-27, 73 (9): 1274. Bibcode:2011BVol...73.1259C. S2CID 140540145. doi:10.1007/s00445-011-0477-9. 
  73. ^ Stothers 2000,第361页.
  74. ^ 74.0 74.1 Brovkin et al. 2010,第675页.
  75. ^ Oppenheimer 2003,第424页.
  76. ^ Hammer, Clausen & Langway 1988,第107页.
  77. ^ 77.0 77.1 77.2 77.3 Oppenheimer 2003,第422页.
  78. ^ Zielinski, Gregory A. Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core. Journal of Geophysical Research. 1995, 100 (D10): 20949. Bibcode:1995JGR...10020937Z. doi:10.1029/95JD01751. 
  79. ^ Witze, Alexandra. Earth: Volcanic bromine destroyed ozone: Blasts emitted gas that erodes protective atmospheric layer. Science News. 2012-07-14, 182 (1): 12. doi:10.1002/scin.5591820114. 
  80. ^ Hamilton 2013,第39–40页.
  81. ^ Centuries-old volcano mystery solved?. Science News. UPI. 2012-06-18 [2019-03-11]. (原始内容存档于2019-04-01). 
  82. ^ 82.0 82.1 82.2 82.3 82.4 Hamilton 2013,第40页.
  83. ^ Narcisi et al. 2019,第168页.
  84. ^ Bufanio 2022,第20页.
  85. ^ 85.0 85.1 Kokfelt et al. 2016,第2页.
  86. ^ Swingedouw et al. 2017,第28页.
  87. ^ Boudon, Georges; Balcone-Boissard, Hélène; Solaro, Clara; Martel, Caroline. Revised chronostratigraphy of recurrent ignimbritic eruptions in Dominica (Lesser Antilles arc): Implications on the behavior of the magma plumbing system (PDF). Journal of Volcanology and Geothermal Research. 2017-09, 343: 135 [2024-11-27]. Bibcode:2017JVGR..343..135B. ISSN 0377-0273. doi:10.1016/j.jvolgeores.2017.06.022. (原始内容存档 (PDF)于2022-10-06) (英语). 
  88. ^ Kellerhals, Thomas; Tobler, Leonhard; Brütsch, Sabina; Sigl, Michael; Wacker, Lukas; Gäggeler, Heinz W.; Schwikowski, Margit. Thallium as a Tracer for Preindustrial Volcanic Eruptions in an Ice Core Record from Illimani, Bolivia. Environmental Science & Technology. 2010-02-01, 44 (3): 888–93. Bibcode:2010EnST...44..888K. ISSN 0013-936X. PMID 20050662. doi:10.1021/es902492n. 
  89. ^ Knüsel, S. Dating of two nearby ice cores from the Illimani, Bolivia. Journal of Geophysical Research. 2003, 108 (D6): 4181. Bibcode:2003JGRD..108.4181K. doi:10.1029/2001JD002028 . 
  90. ^ Fu et al. 2016,第2862页.
  91. ^ Wendl, I. A.; Eichler, A.; Isaksson, E.; Martma, T.; Schwikowski, M. 800-year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions. Atmospheric Chemistry and Physics. 2015-07-07, 15 (13): 7290. Bibcode:2015ACP....15.7287W. doi:10.5194/acp-15-7287-2015 . 
  92. ^ Baroni et al. 2019,第6页.
  93. ^ Vidal et al. 2016,第7页.
  94. ^ Pouget, Manon; Moussallam, Yves; Rose-Koga, Estelle F.; Sigurdsson, Haraldur. A reassessment of the sulfur, chlorine and fluorine atmospheric loading during the 1815 Tambora eruption. Bulletin of Volcanology. 2023-10-25, 85 (11): 12 [2024-11-27]. Bibcode:2023BVol...85...66P. S2CID 264451181. doi:10.1007/s00445-023-01683-8. (原始内容存档于2023-10-26) (英语). 
  95. ^ Vidal et al. 2015,第21页.
  96. ^ 96.0 96.1 Stothers 2000,第362页.
  97. ^ Baroni et al. 2019,第21页.
  98. ^ Bufanio 2022,第22页.
  99. ^ Timmreck et al. 2009,第1页.
  100. ^ Alloway et al. 2017,第96页.
  101. ^ Baillie, M. G. L.; McAneney, J. Tree ring effects and ice core acidities clarify the volcanic record of the first millennium. Climate of the Past. 2015-01-16, 11 (1): 105 [2018-10-19]. Bibcode:2015CliPa..11..105B. ISSN 1814-9324. doi:10.5194/cp-11-105-2015 . (原始内容存档于2018-10-20) (英语). 
  102. ^ Davi, N.K.; D'Arrigo, R.; Jacoby, G.C.; Cook, E.R.; Anchukaitis, K.J.; Nachin, B.; Rao, M.P.; Leland, C. A long-term context (931–2005 C.E.) for rapid warming over Central Asia. Quaternary Science Reviews. 2015-08, 121: 95. Bibcode:2015QSRv..121...89D. doi:10.1016/j.quascirev.2015.05.020 . 
  103. ^ 103.0 103.1 Hantemirov, Rashit M; Gorlanova, Ludmila A; Shiyatov, Stepan G. Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology. 2004-07, 209 (1–4): 161. Bibcode:2004PPP...209..155H. ISSN 0031-0182. doi:10.1016/j.palaeo.2003.12.023 (英语). 
  104. ^ Scuderi, Louis A. Tree-Ring Evidence for Climatically Effective Volcanic Eruptions. Quaternary Research. 1990, 34 (1): 73. Bibcode:1990QuRes..34...67S. ISSN 1096-0287. S2CID 129758817. doi:10.1016/0033-5894(90)90073-T (英语). 
  105. ^ Thun, Terje; Svarva, Helene. Tree-ring growth shows that the significant population decline in Norway began decades before the Black Death. Dendrochronologia. 2018-02, 47: 28. Bibcode:2018Dendr..47...23T. ISSN 1125-7865. doi:10.1016/j.dendro.2017.12.002 (英语). 
  106. ^ Lee, Kyung Eun; Park, Wonsun; Yeh, Sang-Wook; Bae, Si Woong; Ko, Tae Wook; Lohmann, Gerrit; Nam, Seung-Il. Enhanced climate variability during the last millennium recorded in alkenone sea surface temperatures of the northwest Pacific margin. Global and Planetary Change. 2021-09-01, 204: 7. Bibcode:2021GPC...20403558L. ISSN 0921-8181. doi:10.1016/j.gloplacha.2021.103558 (英语). 
  107. ^ Chu, Guoqiang; Sun, Qing; Wang, Xiaohua; Liu, Meimei; Lin, Yuan; Xie, Manman; Shang, Wenyu; Liu, Jiaqi. Seasonal temperature variability during the past 1600 years recorded in historical documents and varved lake sediment profiles from northeastern China. The Holocene. 2012-07-01, 22 (7): 787. Bibcode:2012Holoc..22..785C. ISSN 0959-6836. S2CID 128544002. doi:10.1177/0959683611430413 (英语). 
  108. ^ Tan, Liangcheng; Shen, Chuan-Chou; Löwemark, Ludvig; Chawchai, Sakonvan; Edwards, R. Lawrence; Cai, Yanjun; Breitenbach, Sebastian F. M.; Cheng, Hai; Chou, Yu-Chen; Duerrast, Helmut; Partin, Judson W.; Cai, Wenju; Chabangborn, Akkaneewut; Gao, Yongli; Kwiecien, Ola; Wu, Chung-Che; Shi, Zhengguo; Hsu, Huang-Hsiung; Wohlfarth, Barbara. Rainfall variations in central Indo-Pacific over the past 2,700 y. Proceedings of the National Academy of Sciences. 2019-08-27, 116 (35): 17202, 17204. Bibcode:2019PNAS..11617201T. ISSN 0027-8424. PMC 6717306 . PMID 31405969. doi:10.1073/pnas.1903167116  (英语). 
  109. ^ Fei, Jie; Zhou, Jie. The drought and locust plague of 942–944 AD in the Yellow River Basin, China. Quaternary International. 2016-02, 394: 120. Bibcode:2016QuInt.394..115F. ISSN 1040-6182. doi:10.1016/j.quaint.2014.11.053 (英语). 
  110. ^ Stoffel et al. 2015,第787页.
  111. ^ 111.0 111.1 Kokfelt et al. 2016,第6页.
  112. ^ Brovkin et al. 2010,第674页.
  113. ^ Guillet et al. 2017,第123页.
  114. ^ Baillie, M. G. L.; McAneney, J. Tree ring effects and ice core acidities clarify the volcanic record of the first millennium. Climate of the Past. 2015-01-16, 11 (1): 106. Bibcode:2015CliPa..11..105B. doi:10.5194/cp-11-105-2015 . 
  115. ^ Boucher, Olivier. Stratospheric Aerosols. Atmospheric Aerosols. Springer Netherlands. 2015: 279. ISBN 978-94-017-9649-1. doi:10.1007/978-94-017-9649-1_12. 
  116. ^ Wade et al. 2020,第26651页.
  117. ^ 117.0 117.1 Guillet, Sebastien; Corona, Christophe; Stoffel, Markus; Khodri, Myriam; Poulain, Virginie; Guiot, Joel; Luckman, Brian; Churakova, Olga; Beniston, Martin; Franck, Lavigne; Masson-Delmotte, Valerie; Oppenheimer, Clive. Toward a more realistic assessment of the climatic impacts of the 1257 eruption. EGU General Assembly 2015. 2015, 17: 1268. Bibcode:2015EGUGA..17.1268G. 
  118. ^ Stoffel et al. 2015,第785页.
  119. ^ Wade et al. 2020,第26653页.
  120. ^ Swingedouw et al. 2017,第30页.
  121. ^ Timmreck et al. 2009,第3页.
  122. ^ Brewington, Seth D. The Social Costs of Resilience: An Example from the Faroe Islands. Archeological Papers of the American Anthropological Association. 2016-05, 27 (1): 99. doi:10.1111/apaa.12076. 
  123. ^ Yang, Weilin; Li, Yingkui; Liu, Gengnian; Chu, Wenchao. Timing and climatic-driven mechanisms of glacier advances in Bhutanese Himalaya during the Little Ice Age. The Cryosphere. 2022-09-21, 16 (9): 3747 [2024-11-27]. Bibcode:2022TCry...16.3739Y. ISSN 1994-0416. S2CID 252451837. doi:10.5194/tc-16-3739-2022 . (原始内容存档于2024-07-21) (英语). 
  124. ^ Huston, Alan; Siler, Nicholas; Roe, Gerard H.; Pettit, Erin; Steiger, Nathan J. Understanding drivers of glacier-length variability over the last millennium. The Cryosphere. 2021-04-01, 15 (3): 1647 [2024-11-27]. Bibcode:2021TCry...15.1645H. ISSN 1994-0416. S2CID 233737859. doi:10.5194/tc-15-1645-2021 . (原始内容存档于2024-11-22) (英语). 
  125. ^ Robock, Alan. The Latest on Volcanic Eruptions and Climate. Eos, Transactions American Geophysical Union. 2013-08-27, 94 (35): 305–306. Bibcode:2013EOSTr..94..305R. S2CID 128567847. doi:10.1002/2013EO350001 . 
  126. ^ 126.0 126.1 Guillet et al. 2017,第126页.
  127. ^ Fu et al. 2016,第2859页.
  128. ^ Chikamoto, Megumi O.; Timmermann, Axel; Yoshimori, Masakazu; Lehner, Flavio; Laurian, Audine; Abe-Ouchi, Ayako; Mouchet, Anne; Joos, Fortunat; Raible, Christoph C.; Cobb, Kim M. Intensification of tropical Pacific biological productivity due to volcanic eruptions (PDF). Geophysical Research Letters. 2016-02-16, 43 (3): 1185 [2018-12-16]. Bibcode:2016GeoRL..43.1184C. doi:10.1002/2015GL067359 . (原始内容存档 (PDF)于2018-07-22). 
  129. ^ Kim, Seong-Joong; Kim, Baek-Min. Ocean Response to the Pinatubo and 1259 Volcanic Eruptions. Ocean and Polar Research. 2012-09-30, 34 (3): 321. doi:10.4217/OPR.2012.34.3.305 . 
  130. ^ Wade et al. 2020,第26657页.
  131. ^ Wade et al. 2020,第26656页.
  132. ^ Neukom, Raphael; Gergis, Joëlle; Karoly, David J.; Wanner, Heinz; Curran, Mark; Elbert, Julie; González-Rouco, Fidel; Linsley, Braddock K.; Moy, Andrew D.; Mundo, Ignacio; Raible, Christoph C.; Steig, Eric J.; van Ommen, Tas; Vance, Tessa; Villalba, Ricardo; Zinke, Jens; Frank, David. Inter-hemispheric temperature variability over the past millennium. Nature Climate Change. 2014-03-30, 4 (5): 364 [2024-11-27]. Bibcode:2014NatCC...4..362N. doi:10.1038/nclimate2174. (原始内容存档于2024-06-05). 
  133. ^ 133.0 133.1 133.2 Lavigne et al. 2013,第16746页.
  134. ^ 134.0 134.1 Baldwin, Mark P.; Birner, Thomas; Brasseur, Guy; Burrows, John; Butchart, Neal; Garcia, Rolando; Geller, Marvin; Gray, Lesley; Hamilton, Kevin; Harnik, Nili; Hegglin, Michaela I.; Langematz, Ulrike; Robock, Alan; Sato, Kaoru; Scaife, Adam A. 100 Years of Progress in Understanding the Stratosphere and Mesosphere. Meteorological Monographs. 2018-01-01, 59: 27.36. Bibcode:2018MetMo..59...27B. ISSN 0065-9401. doi:10.1175/AMSMONOGRAPHS-D-19-0003.1 . 
  135. ^ Newhall, Self & Robock 2018,第575页.
  136. ^ Hernández-Almeida, I.; Grosjean, M.; Przybylak, R.; Tylmann, W. A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability (PDF). Quaternary Science Reviews. 2015-08, 122: 74–88. Bibcode:2015QSRv..122...74H. doi:10.1016/j.quascirev.2015.05.029. 
  137. ^ Andres & Peltier 2016,第5783页.
  138. ^ Andres & Peltier 2016,第5779页.
  139. ^ Bradley, R. S.; Wanner, H.; Diaz, H. F. The Medieval Quiet Period. The Holocene. 2016-01-22, 26 (6): 992. Bibcode:2016Holoc..26..990B. S2CID 10041389. doi:10.1177/0959683615622552. 
  140. ^ Jomelli et al. 2016,第3页.
  141. ^ Nicolussi, Kurt; Le Roy, Melaine; Schlüchter, Christian; Stoffel, Markus; Wacker, Lukas. The glacier advance at the onset of the Little Ice Age in the Alps: New evidence from Mont Miné and Morteratsch glaciers. The Holocene. 2022-07, 32 (7): 635 [2024-11-27]. Bibcode:2022Holoc..32..624N. ISSN 0959-6836. S2CID 248732759. doi:10.1177/09596836221088247. hdl:20.500.11850/549477. (原始内容存档于2023-06-11) (英语). 
  142. ^ Zhong, Y.; Miller, G. H.; Otto-Bliesner, B. L.; Holland, M. M.; Bailey, D. A.; Schneider, D. P.; Geirsdottir, A. Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Climate Dynamics. 2010-12-31, 37 (11–12): 2374–2375. Bibcode:2011ClDy...37.2373Z. S2CID 54881452. doi:10.1007/s00382-010-0967-z. 
  143. ^ Margalef et al. 2018,第4页.
  144. ^ Miller, Gifford H.; Geirsdóttir, Áslaug; Zhong, Yafang; Larsen, Darren J.; Otto-Bliesner, Bette L.; Holland, Marika M.; Bailey, David A.; Refsnider, Kurt A.; Lehman, Scott J.; Southon, John R.; Anderson, Chance; Björnsson, Helgi; Thordarson, Thorvaldur. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks (PDF). Geophysical Research Letters. 2012-01, 39 (2): L02708 [2024-11-27]. Bibcode:2012GeoRL..39.2708M. S2CID 15313398. doi:10.1029/2011GL050168 . (原始内容存档 (PDF)于2024-06-17). 
  145. ^ Naulier, M.; Savard, M. M.; Bégin, C.; Gennaretti, F.; Arseneault, D.; Marion, J.; Nicault, A.; Bégin, Y. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Climate of the Past. 2015-09-17, 11 (9): 1160. Bibcode:2015CliPa..11.1153N. doi:10.5194/cp-11-1153-2015 . 
  146. ^ Dätwyler et al. 2017,第2336页.
  147. ^ Dätwyler et al. 2017,第2321–2322页.
  148. ^ 148.0 148.1 Emile-Geay et al. 2008,第3141页.
  149. ^ Du, Xiaojing; Hendy, Ingrid; Hinnov, Linda; Brown, Erik; Schimmelmann, Arndt; Pak, Dorothy. Interannual Southern California Precipitation Variability During the Common Era and the ENSO Teleconnection. Geophysical Research Letters. 2020, 47 (1): 8. Bibcode:2020GeoRL..4785891D. ISSN 1944-8007. doi:10.1029/2019GL085891  (英语). 
  150. ^ Emile-Geay et al. 2008,第3144页.
  151. ^ Dee, Sylvia G.; Cobb, Kim M.; Emile-Geay, Julien; Ault, Toby R.; Edwards, R. Lawrence; Cheng, Hai; Charles, Christopher D. No consistent ENSO response to volcanic forcing over the last millennium. Science. 2020-03-27, 367 (6485): 1477–1481 [2024-11-27]. Bibcode:2020Sci...367.1477D. ISSN 0036-8075. PMID 32217726. S2CID 214671146. doi:10.1126/science.aax2000. (原始内容存档于2023-09-09) (英语). 
  152. ^ Yan, Qing; Korty, Robert; Zhang, Zhongshi. Tropical Cyclone Genesis Factors in a Simulation of the Last Two Millennia: Results from the Community Earth System Model. Journal of Climate. 2015-09, 28 (18): 7185. Bibcode:2015JCli...28.7182Y. ISSN 0894-8755. doi:10.1175/jcli-d-15-0054.1  (英语). 
  153. ^ Wallace, E. J.; Donnelly, J. P.; Hengstum, P. J.; Wiman, C.; Sullivan, R. M.; Winkler, T. S.; d'Entremont, N. E.; Toomey, M.; Albury, N. Intense Hurricane Activity Over the Past 1500 Years at South Andros Island, The Bahamas. Paleoceanography and Paleoclimatology. 2019-11-27, 34 (11): 15–16. Bibcode:2019PaPa...34.1761W. doi:10.1029/2019PA003665 . 
  154. ^ Hernández, Armand; Martin-Puertas, Celia; Moffa-Sánchez, Paola; Moreno-Chamarro, Eduardo; Ortega, Pablo; Blockley, Simon; Cobb, Kim M.; Comas-Bru, Laia; Giralt, Santiago; Goosse, Hugues; Luterbacher, Jürg; Martrat, Belen; Muscheler, Raimund; Parnell, Andrew; Pla-Rabes, Sergi; Sjolte, Jesper; Scaife, Adam A.; Swingedouw, Didier; Wise, Erika; Xu, Guobao. Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene. Earth-Science Reviews. 2020-01-01, 209: 20. Bibcode:2020ESRv..20903286H. ISSN 0012-8252. S2CID 225632127. doi:10.1016/j.earscirev.2020.103286. hdl:10261/221475 (英语). 
  155. ^ Swingedouw et al. 2017,第41页.
  156. ^ 156.0 156.1 156.2 Newhall, Self & Robock 2018,第576页.
  157. ^ Toker, E.; Sivan, D.; Stern, E.; Shirman, B.; Tsimplis, M.; Spada, G. Evidence for centennial scale sea level variability during the Medieval Climate Optimum (Crusader Period) in Israel, eastern Mediterranean. Earth and Planetary Science Letters. 2012-01,. 315–316: 52. Bibcode:2012E&PSL.315...51T. doi:10.1016/j.epsl.2011.07.019. 
  158. ^ Gangadharan, Nidheesh; Goosse, Hugues; Parkes, David; Goelzer, Heiko; Maussion, Fabien; Marzeion, Ben. Process-based estimate of global-mean sea-level changes in the Common Era. Earth System Dynamics. 2022-10-17, 13 (4): 1423 [2024-11-27]. Bibcode:2022ESD....13.1417G. ISSN 2190-4979. S2CID 249090169. doi:10.5194/esd-13-1417-2022 . (原始内容存档于2024-07-12) (英语). 
  159. ^ Knudsen, Karen Luise; Sha, Longbin; Zhao, Meixun; Seidenkrantz, Marit-Solveig; Björck, Svante; Jiang, Hui; Li, Tiegang; Li, Dongling. East Asian Winter Monsoon Variations and Their Links to Arctic Sea Ice During the Last Millennium, Inferred From Sea Surface Temperatures in the Okinawa Trough. Paleoceanography and Paleoclimatology. 2018-01-01, 33 (1): 68 [2024-11-27]. Bibcode:2018PaPa...33...61L. ISSN 2572-4525. S2CID 210097561. doi:10.1002/2016PA003082. (原始内容存档于2023-10-16) (英语). 
  160. ^ Sanchez, Sara C.; Amaya, Dillon J.; Miller, Arthur J.; Xie, Shang-Ping; Charles, Christopher D. The Pacific Meridional Mode over the last millennium. Climate Dynamics. 2019-04-10, 53 (5–6): 4. Bibcode:2019ClDy...53.3547S. ISSN 1432-0894. S2CID 146254012. doi:10.1007/s00382-019-04740-1 (英语). 
  161. ^ Dai, Zhangqi; Wang, Bin; Zhu, Ling; Liu, Jian; Sun, Weiyi; Li, Longhui; Lü, Guonian; Ning, Liang; Yan, Mi; Chen, Kefan. Atlantic multidecadal variability response to external forcing during the past two millenniums. Journal of Climate. 2022-09-09, –1 (aop): 7 [2024-11-27]. Bibcode:2022JCli...35.4503D. ISSN 0894-8755. S2CID 252249527. doi:10.1175/JCLI-D-21-0986.1. (原始内容存档于2022-10-25) (英语). 
  162. ^ Zhang, Xuanze; Peng, Shushi; Ciais, Philippe; Wang, Ying-Ping; Silver, Jeremy D.; Piao, Shilong; Rayner, Peter J. Greenhouse Gas Concentration and Volcanic Eruptions Controlled the Variability of Terrestrial Carbon Uptake Over the Last Millennium. Journal of Advances in Modeling Earth Systems. 2019-06-19, 11 (6): 1724. Bibcode:2019JAMES..11.1715Z. PMC 6774283 . PMID 31598188. doi:10.1029/2018MS001566. 
  163. ^ Sousa, Pedro M.; Ramos, Alexandre M.; Raible, Christoph C.; Messmer, M.; Tomé, Ricardo; Pinto, Joaquim G.; Trigo, Ricardo M. North Atlantic Integrated Water Vapor Transport—From 850 to 2100 CE: Impacts on Western European Rainfall. Journal of Climate. 2020-01-01, 33 (1): 267. Bibcode:2020JCli...33..263S. ISSN 0894-8755. doi:10.1175/JCLI-D-19-0348.1  (英语). 
  164. ^ Stevenson et al. 2019,第1548页.
  165. ^ Banerji, Upasana S.; Padmalal, D. 12 – Bond events and monsoon variability during Holocene—Evidence from marine and continental archives. Holocene Climate Change and Environment (Elsevier). 2022-01-01: 322 [2024-11-27]. ISBN 9780323900850. S2CID 244441781. doi:10.1016/B978-0-323-90085-0.00016-4. (原始内容存档于2023-02-11) (英语). 
  166. ^ Misios et al. 2022,第819页.
  167. ^ Schneider, David P.; Ammann, Caspar M.; Otto-Bliesner, Bette L.; Kaufman, Darrell S. Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. Journal of Geophysical Research. 2009-08-01, 114 (D15): 19. Bibcode:2009JGRD..11415101S. S2CID 59361457. doi:10.1029/2008JD011222 . 
  168. ^ Guillet, Sebastien; Corona, Christophe; Stoffel, Markus; Khodri, Myriam; Poulain, Virginie; Lavigne, Franck; Churakova, Olga; Ortega, Pablo; Daux, Valerie; Luckman, Brian; Guiot, Joel; Oppenheimer, Clive; Masson-Delmotte, Valérie; Edouard, Jean-Louis. Reassessing the climatic impacts of the AD 1257 Samalas eruption in Europe and in the Northern Hemisphere using historical archives and tree-rings. EGU General Assembly 2016. 2016, 18: EPSC2016–15250. Bibcode:2016EGUGA..1815250G. 
  169. ^ Herweijer, Celine; Seager, Richard; Cook, Edward R.; Emile-Geay, Julien. North American Droughts of the Last Millennium from a Gridded Network of Tree-Ring Data. Journal of Climate. 2007-04, 20 (7): 1355. Bibcode:2007JCli...20.1353H. CiteSeerX 10.1.1.466.4049 . ISSN 0894-8755. S2CID 129185669. doi:10.1175/jcli4042.1 (英语). 
  170. ^ D'Arrigo, Rosanne; Frank, David; Jacoby, Gordon; Pederson, Neil. Spatial Response to Major Volcanic Events in or about AD 536, 934 and 1258: Frost Rings and Other Dendrochronological Evidence from Mongolia and Northern Siberia: Comment on R. B. Stothers, 'Volcanic Dry Fogs, Climate Cooling, and Plague Pandemics in Europe and the Middle East' (Climatic Change, 42, 1999). Climatic Change. 2001, 49 (1/2): 243. doi:10.1023/A:1010727122905. 
  171. ^ Büntgen, Ulf; Urban, Otmar; Krusic, Paul J.; Rybníček, Michal; Kolář, Tomáš; Kyncl, Tomáš; Ač, Alexander; Koňasová, Eva; Čáslavský, Josef; Esper, Jan; Wagner, Sebastian; Saurer, Matthias; Tegel, Willy; Dobrovolný, Petr; Cherubini, Paolo; Reinig, Frederick; Trnka, Miroslav. Recent European drought extremes beyond Common Era background variability. Nature Geoscience. 2021-04, 14 (4): 194 [2024-11-27]. Bibcode:2021NatGe..14..190B. ISSN 1752-0908. S2CID 232237182. doi:10.1038/s41561-021-00698-0. (原始内容存档于2024-07-26) (英语). 
  172. ^ Büntgen et al. 2022,第543页.
  173. ^ 173.0 173.1 Alloway et al. 2017,第98页.
  174. ^ Mutaqin & Lavigne 2019,第2页.
  175. ^ Mutaqin & Lavigne 2019,第4页.
  176. ^ Lavigne et al. 2013,Supporting Information.
  177. ^ Hamilton 2013,第41页.
  178. ^ Malawani et al. 2022,第8页.
  179. ^ Mutaqin & Lavigne 2019,第9页.
  180. ^ Kholis, Muhammad Arsyad Nur; Kurnia, Wahyu. Suling Dewa Sebagai Identitas Simbolik Masyarakat Sasak Kuto-Kute di Karang Bajo Bayan Lombok Utara. Jurnal Kajian Seni. 2021-11-26, 8 (1): 19. ISSN 2356-3001. S2CID 247378729. doi:10.22146/jksks.64498 (印度尼西亚语). 
  181. ^ 181.0 181.1 Reid, Anthony. Population history in a dangerous environment: How important may natural disasters have been?. Masyarakat Indonesia. 2017-01-16, 39 (2): 520 [2018-10-18]. ISSN 2502-5694. (原始内容存档于2018-10-19) (英语). 
  182. ^ Reid, Anthony. Building Cities in a Subduction Zone: Some Indonesian Dangers. Miller, Michelle Ann; Douglass, Mike (编). Disaster Governance in Urbanising Asia. Springer Singapore. 2016: 51. ISBN 978-981-287-649-2. doi:10.1007/978-981-287-649-2_3. 
  183. ^ Malawani et al. 2022,第11页.
  184. ^ Mutaqin & Lavigne 2019,第7–8页.
  185. ^ Anderson, Atholl. The First Migration: Māori Origins 3000 BC – AD 1450. Bridget Williams Books. 2016: 18. ISBN 9780947492809 (英语). 
  186. ^ Ludlow, Francis. Volcanology: Chronicling a medieval eruption. Nature Geoscience. 2017, 10 (2): 78–79. Bibcode:2017NatGe..10...78L. ISSN 1752-0908. doi:10.1038/ngeo2881 (英语). 
  187. ^ Stothers 2000,第363页.
  188. ^ D'Arrigo, Rosanne; Jacoby, Gordon; Frank, David. Dendroclimatological evidence for major volcanic events of the past two millennia. Volcanism and the Earth's Atmosphere: Dendroclimatological evidence for major volcanic events of the past two millennia. Geophysical Monograph Series 139. Washington DC American Geophysical Union Geophysical Monograph Series. 2003: 259. Bibcode:2003GMS...139..255D. ISBN 978-0-87590-998-1. doi:10.1029/139GM16. 
  189. ^ 189.0 189.1 Dodds & Liddy 2011,第54页.
  190. ^ Frey Sánchez, Antonio Vicente. ¿Qué puede aportar el clima a la historia? El ejemplo del periodo cálido medieval en el Magreb almorávide y almohade. El Futuro del Pasado: Revista Electrónica de Historia. 2017, 6 (8): 221–266 [2018-10-20]. ISSN 1989-9289. doi:10.14516/fdp.2017.008.001.008 . (原始内容存档于2018-10-20) (西班牙语). 
  191. ^ Grillo 2021,第150页.
  192. ^ Guillet et al. 2017,第124页.
  193. ^ 193.0 193.1 Guillet et al. 2017,第127页.
  194. ^ 194.0 194.1 Stothers 2000,第366页.
  195. ^ Bufanio 2022,第23页.
  196. ^ Bufanio 2022,第25页.
  197. ^ Stothers 2000,第364页.
  198. ^ 198.0 198.1 John Gillingham. Conquests, Catastrophe and Recovery: Britain and Ireland 1066–1485. Random House. 2014: 26. ISBN 978-1-4735-2233-6. 
  199. ^ Campbell 2017,第91页.
  200. ^ Bufanio 2022,第27页.
  201. ^ Campbell 2017,第108页.
  202. ^ Campbell 2017,第119页.
  203. ^ Speed, Robert; Tickner, David; Lei, Gang; Sayers, Paul; Wei, Yu; Li, Yuanyuan; Moncrieff, Catherine; Pegram, Guy. Drought risk management: a strategic approach. UNESCO Publishing. 2016: 44. ISBN 978-92-3-100094-2. 
  204. ^ Bufanio 2022,第26页.
  205. ^ Bufanio 2022,第23,25页.
  206. ^ Moglia 2022,第53页.
  207. ^ Degroot, Dagomar; Anchukaitis, Kevin; Bauch, Martin; Burnham, Jakob; Carnegy, Fred; Cui, Jianxin; de Luna, Kathryn; Guzowski, Piotr; Hambrecht, George; Huhtamaa, Heli; Izdebski, Adam; Kleemann, Katrin; Moesswilde, Emma; Neupane, Naresh; Newfield, Timothy; Pei, Qing; Xoplaki, Elena; Zappia, Natale. Towards a rigorous understanding of societal responses to climate change. Nature. 2021-03, 591 (7851): 545–546 [2024-11-27]. Bibcode:2021Natur.591..539D. ISSN 1476-4687. PMID 33762769. S2CID 232354348. doi:10.1038/s41586-021-03190-2. (原始内容存档于2024-11-04) (英语). 
  208. ^ Domingues, Lidia L. Zanetti. Carestia, maltempo e alleanze politiche: Siena e Manfredi di Sicilia fra 1257 e 1260. Studi di storia medioevale e di diplomatica. Nuova Serie. 2022-10-30: 104 [2024-11-27]. ISSN 2611-318X. doi:10.54103/2611-318X/18283. (原始内容存档于2024-09-11) (意大利语). 
  209. ^ Bortoluzzi, Daniele. Bologna e gli Ordinamenta Bladi. Studi di storia medioevale e di diplomatica. Nuova Serie. 2022-10-30: 89 [2024-11-27]. ISSN 2611-318X. doi:10.54103/2611-318X/18282. (原始内容存档于2024-09-11) (意大利语). 
  210. ^ Moglia 2022,第52页.
  211. ^ Moglia 2022,第55页.
  212. ^ Moglia 2022,第58页.
  213. ^ Bertoni 2022,第37页.
  214. ^ Bertoni 2022,第39页.
  215. ^ Grillo 2021,第153页.
  216. ^ Grillo 2021,第154页.
  217. ^ Luongo 2022,第77页.
  218. ^ Harrison & Maher 2014,第180页.
  219. ^ Harrison & Maher 2014,第156–157页.
  220. ^ Xoplaki, Elena; Fleitmann, Dominik; Luterbacher, Juerg; Wagner, Sebastian; Haldon, John F.; Zorita, Eduardo; Telelis, Ioannis; Toreti, Andrea; Izdebski, Adam. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change (PDF). Quaternary Science Reviews. 2016-03, 136: 229–252 [2024-11-27]. Bibcode:2016QSRv..136..229X. doi:10.1016/j.quascirev.2015.10.004 . (原始内容存档 (PDF)于2023-09-09). 
  221. ^ Matson, R.G. The nutritional context of the Pueblo III depopulation of the northern San Juan: Too much maize?. Journal of Archaeological Science: Reports. 2016-02, 5: 622–624. Bibcode:2016JArSR...5..622M. ISSN 2352-409X. doi:10.1016/j.jasrep.2015.08.032 (英语). 
  222. ^ 222.0 222.1 Salzer 2000,第312–314页.
  223. ^ Windes, Thomas C.; Van West, Carla R., Van Dyke, Ruth M.; Heitman, Carrie C. , 编, Landscapes, Horticulture, and the Early Chacoan Bonito Phase, The Greater Chaco Landscape, Ancestors, Scholarship, and Advocacy (University Press of Colorado), 2021: 83 [2021-12-10], ISBN 978-1-64642-169-5, JSTOR j.ctv1m46ffr.6, (原始内容存档于2023-09-09) 
  224. ^ Salzer 2000,第308页.
  225. ^ Cruz, Pablo; Winkel, Thierry; Ledru, Marie-Pierre; Bernard, Cyril; Egan, Nancy; Swingedouw, Didier; Joffre, Richard. Rain-fed agriculture thrived despite climate degradation in the pre-Hispanic arid Andes. Science Advances. 2017-12-01, 3 (12): 5. Bibcode:2017SciA....3E1740C. ISSN 2375-2548. PMC 5738230 . PMID 29279865. doi:10.1126/sciadv.1701740 (英语). 
  226. ^ Guillet et al. 2017,第125页.
  227. ^ Jenkins 2021,第63页.
  228. ^ Molnar, Aaron. Felled Forests and Fallowed Fields: Establishing a Narrative of Ecological and Climate Change in Mongol-Era Goryeo. Seoul Journal of Korean Studies. 2023-06, 36 (1): 225–226 [2024-11-27]. S2CID 259928765. doi:10.1353/seo.2023.a902140. (原始内容存档于2024-04-12) (英语). 
  229. ^ Jenkins 2021,第82页.
  230. ^ Di Cosmo, Wagner & Büntgen 2021,第92页.
  231. ^ Di Cosmo, Wagner & Büntgen 2021,第97页.
  232. ^ Di Cosmo, Wagner & Büntgen 2021,第100页.
  233. ^ Kern, Zoltán; Pow, Stephen; Pinke, Zsolt; Ferenczi, László. Samalas and the Fall of the Mongol Empire: A volcanic eruption's influence on the dissolution of history's largest contiguous empire. EGU General Assembly Conference Abstracts. 23rd EGU General Assembly: EGU21–3460. 2021-04-01 [2024-11-27]. Bibcode:2021EGUGA..23.3460K. (原始内容存档于2024-04-28). 
  234. ^ Hao, Zhixin; Zheng, Jingyun; Yu, Yingzhuo; Xiong, Danyang; Liu, Yang; Ge, Quansheng. Climatic changes during the past two millennia along the Ancient Silk Road. Progress in Physical Geography: Earth and Environment. 2020-10-01, 44 (5): 619–620. Bibcode:2020PrPG...44..605H. ISSN 0309-1333. S2CID 213726073. doi:10.1177/0309133319893919 (英语). 
  235. ^ Fell et al. 2020,第41页.
  236. ^ Fell et al. 2020,第42页.
  237. ^ Fell et al. 2020,第40页.
  238. ^ Fell et al. 2020,第43页.

来源

编辑