志留紀—泥盆紀陸地革命

志留紀—泥盆紀陸地革命英語Silurian-Devonian Terrestrial Revolution),也稱泥盆紀植物爆發Devonian Plant Explosion,簡稱DePE[1]泥盆紀大爆發Devonian explosion),是顯生宙古生代中期有胚植物(特別是維管植物)和真菌開始在陸地上出現快速定殖多樣化輻射的時期,發生在距今4.28至3.59億年前的志留紀泥盆紀期間[2][3][4],其中最關鍵的階段發生在兩紀之交[5]。這個時期的植物相主要是通過孢子繁殖的蕨類植物,與現今主流的被子植物無論在外形、結構和繁殖策略上都有很大不同,而且大多在後來的泥盆紀後期滅絕事件石炭紀雨林崩潰事件二疊紀末大滅絕滅絕事件消亡[6][7],其生態位大多被後出現的種子植物裸子植物和被子植物)所取代。

泥盆紀沼澤的藝術想象畫,源自《The World Before the Deluge》(1872)一書

陸生自營生物的出現和不斷繁盛對地球表面的自然環境產生了很大的衝擊,特別是通過不斷光合作用改變了地球大氣層的成分,使得氧氣濃度首次超過了10%。陸生植物日漸強健的根系也不斷侵蝕岩石層,所產生的細砂與各種有機物碎屑混合後形成了土壤,最終在地殼上形成了可以保水並且富含腐殖質土壤層,為之後動物的登陸演化創造了棲息條件[8]。植物對地表風化作用的加速,也顯著影響了地球的水圈(特別是淡水),使得大量礦物質被從岩石中釋放並隨着地表徑流進入水體,最終也逐漸提高了海洋鹽度。植物葉部蒸騰作用產生的水蒸氣也影響了水循環,加上固碳移除二氧化碳降低了溫室效應,使得全球氣候受到影響,部分造成了晚古生代大冰期

陸地生命

編輯

最先登陸並定殖陸地的複雜生物其實是真菌,其中一些與綠藻藍綠菌發生共生演化成了早期的地衣,另一些(特別是球囊菌)甚至發展成了直徑達1公尺(3.3英尺)、高度則可達8.8公尺(29英尺)的原杉菌Prototaxites),是當時陸地上最大的生物,直到石炭紀早期才在尺寸上被植物超過。植物很可能沿着並利用真菌的菌絲擴展根系形成了共生的菌根,並且在植物根際之間的土壤內形成了可以交換養分菌根網絡[9]。最早由真菌與維管植物共生產生的菌根化石出現於泥盆紀早期[10]

最早可以在陸地環境存活的綠色質體生物植物綠藻的共同祖先)很可能在奧陶紀就已出現[11]。最早登陸的有胚植物非維管苔蘚植物,出現在4.7億年前的奧陶紀中後期[12][13][14],其中在波羅的大陸達瑞威爾期就已經存在了頗具多樣性的植物群[15]汞同位素調查(∆199Hg和∆200Hg)發現陸生植物在志留紀早期就已經擴散至陸地上很大區域[16]。在侯默期冰期早古生代大冰期英語Early Paleozoic Icehouse的一部分)結束後出現了一個間冰期暖化,三縫孢的植物也首次出現了大規模的多樣化事件,但之後在盧德福德期中期又再次因冰期出現大規模海退,在引發勞階滅絕事件的同時也讓出大量新暴露的陸地供植物和藍綠菌菌毯定殖,使得多孢植物開始繁盛[17]並在之後普里道利世的溫暖期開始進一步多樣化[18]。最早的維管植物化石以孢子體的形態出現在文洛克世[19],而最早的石松門物種——巴氏石松Baragwanathia)出現在隨後的羅德洛世[20][21]孢粉學證據表明志留紀的陸生植物一致性很強,而不向現代植物那樣會因為區域不同而呈現物種多樣性[22]。志留紀的植物多樣化得到了瑞亞克洋中數個快速變化的小型火山島相助,其環境多變性使得演化得以加速[23],但當時的植物尺寸很小,其中一個物種(Tichavekia grandis)達到13公分(5.1英寸)的高度已經算作巨型植物[24]

泥盆紀的地表則出現了廣泛綠化[25],許多現代維管植物的演化支都出現在這個時期。真葉植物基群出現在泥盆紀早期的化石中[26],而石松也首次出現了演化輻射[11]。和志留紀一樣,泥盆紀早期的植物群落無論地處哪裡都十分相似[27],只有極少數具有特有性.[28]。真葉植物的多樣性在泥盆紀中期繼續增加[29],高度超過8公尺(26英尺)的真正意義上的樹林也首次出現[30],最早的森林化石出現在艾菲爾期[31],最古老的樹木是枝蕨綱[32]。泥盆紀的樹沼森林主要充斥着巨型木賊真蕨類羊齒植物和可以長到40公尺(130英尺)高的鱗木科石松[6],而種子蕨前裸子植物也在這段時期興盛[33][34],其中古蕨屬發展出了複雜的根系系統,可以應對乾燥環境[35]。因為蕨類植物和前裸子植物的迅速輻射,植物在泥盆紀晚期的多樣化最為迅速[36],而枝蕨綱繼續成為森林生態系統的主力.[32]。在泥盆紀末期,真正意義上的種子植物開始出現[37]。與現代植物外形相似的泥盆紀植物是真蕨類),雖然其中許多物種被懷疑是附生植物。真正的裸子植物(銀杏蘇鐵)則是在石炭紀才真正出現[6]

各植物之間為了爭奪單位面積內總量有限的日光照射、土壤養分和生長空間,其表型的多樣性在志留紀和泥盆紀期間增加的幅度不亞於動物在寒武紀大爆發中的程度[38]。這期間維管植物因為演化出了木質素更能縱向生長,使得高聳茂密的樹冠開始成為常態,並在之後的石炭紀形成了廣袤的煤炭森林沼澤植被在地表上產生的遮掩也為各類陸生動物(主要是六足類蛛形類多足類節肢動物真肺類腹足綱軟體動物四足類脊椎動物寡毛類環節動物)提供了庇護環境,同時創造了植食這一種新的覓食策略。植物和動物之間的互動使其共同演化出了各種反捕適應共生關係[39],其中一些新演化出的裸子植物甚至開始依賴動物(主要是昆蟲)協助其授粉和傳播種子

對大氣、氣候和土壤的影響

編輯

根系更深的維管植物對土壤大氣海洋中的氧氣含量都造成了深遠影響,因此誕生了用來解釋生物地質形態變化的「泥盆紀植物假說」(Devonian Plant Hypothesis)[8]。泥盆紀的陸生植物擴張改變了土壤成分,並增加了硅酸鹽的風化[40][41]。因為陸地植物所受的日光照射更充足,光合固碳使得大氣中的二氧化碳含量從6300 ppmv降至2100 ppmv。雖然植被可以明顯減少了陸地的日光反照率,但當時分解木質食碎屑動物微生物尚未演化成熟,這使得大量碳元素被轉換為截存在淤泥河岩層中而不是回歸碳循環,因此大大降低了溫室效應[42]。這加上當時岡瓦納大陸構造抬升暴露出的玄武岩也會吸收大量二氧化碳[43],引發了泥盆紀晚期開始的晚古生代大冰期[44][45][46]。但學術界也有另外的假說認為陸地植物的演化其實會減少硅酸鹽風化[47]

泥盆紀植物興盛的另一個結果是大氣層中的氧氣含量劇增,使其在氧氣地質歷史上首次上升超過大氣成分的10%(現今水平的一半),是地球第三次大規模的氧化事件[42](前兩次分別是太古宙末期因藍綠菌產氧引發的大氧化事件、以及元古宙後期因質體藻類繁盛導致的新元古代氧化事件)。伴隨氧氣一同劇增的是野火的頻率[48],而地球的氧氣濃度在普里道利世首次達到了可以產生林火的水平,在化石證據中留下了最早的木炭痕跡[49],但泥盆紀早期和中期的大部分時期大氣層的含氧量還不足以引發頻繁的火災[50]。到了法門期晚期,大規模野火已經是常見現象[51][52]

陸生植物的繁盛使得內陸水體中的細砂沉積物淤泥)總量劇增,這些沉積物在沖積平原的積累造成了河流曲流交織的複雜度,並形成了大量濕地池塘湖泊以及經常被洪澇河岸帶林地,這使得各類節肢動物(包括水生和陸生)、淡水軟體動物(包括淡水螺貝類)、淡水魚食蟲四足動物都得到了更豐富的棲息條件[53]

泥盆紀的植物爆發所造成的風化加速在全球範圍造成了淡水水體和海洋的富養化也加速了沉積物的循環,很可能因此導致赤潮造成海洋低氧現象也引發了泥盆紀末大滅絕[54][55][56]。植物根系對岩石的侵蝕釋放出了大量礦物質(特別是磷酸鹽),而這些礦物質和土壤中的腐殖質降水大量沖刷到地表水體中後會造成養分污染,很可能會引發大範圍的藻華,從而使得當地水體缺氧[57]。這種水體缺氧對水生動物——特別是體型較大的自游動物(比如當時處於霸權生態位的盾皮魚)——尤其致命,其造成的極端選擇壓力也使得淡水生態系統中的一部分四足形類肉鰭魚因為愈加依賴用與魚鰾同源的原始呼吸空氣而向着陸生方向演化,最終在之後的石炭紀成為了四足動物並在二疊紀演化出了徹底擺脫水生的羊膜動物

陸地植物物質在沼澤中沉積的增加也可以解釋泥盆紀岩層煤礦沼氣石油的產生[6]

另見

編輯

參考

編輯
  1. ^ Pawlik, Łukasz; Buma, Brian; Šamonil, Pavel; Kvaček, Jiří; Gałązka, Anna; Kohout, Petr; Malik, Ireneusz. Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth's system properties - A critical review. Earth-Science Reviews. June 2020, 205: 103200. Bibcode:2020ESRv..20503200P. S2CID 218933989. doi:10.1016/j.earscirev.2020.103200 . hdl:20.500.12128/14041 . 
  2. ^ Capel, Elliot; Cleal, Christopher J.; Xue, Jinzhuang; Monnet, Claude; Servais, Thomas; Cascales-Miñana, Borja. The Silurian–Devonian terrestrial revolution: Diversity patterns and sampling bias of the vascular plant macrofossil record. Earth-Science Reviews. August 2022, 231: 104085. Bibcode:2022ESRv..23104085C. doi:10.1016/j.earscirev.2022.104085 . hdl:20.500.12210/76731 . 
  3. ^ Xue, Jinzhuang; Huang, Pu; Wang, Deming; Xiong, Conghui; Liu, Le; Basinger, James F. Silurian-Devonian terrestrial revolution in South China: Taxonomy, diversity, and character evolution of vascular plants in a paleogeographically isolated, low-latitude region. Earth-Science Reviews. May 2018, 180: 92–125 [8 November 2022]. Bibcode:2018ESRv..180...92X. doi:10.1016/j.earscirev.2018.03.004. 
  4. ^ Capel, Elliot; Cleal, Christopher J.; Gerrienne, P.; Servais, Thomas; Cascales-Miñana, Borja. A factor analysis approach to modelling the early diversification of terrestrial vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 March 2021, 566: 110170 [8 November 2022]. Bibcode:2021PPP...56610170C. S2CID 230591548. doi:10.1016/j.palaeo.2020.110170. hdl:20.500.12210/55336 . 
  5. ^ Hao, Shougang; Xue, Jinzhuang; Liu, Zhenfeng; Wang, Deming. Zosterophyllum Penhallow around the Silurian-Devonian Boundary of Northeastern Yunnan, China. International Journal of Plant Sciences. May 2007, 168 (4): 477–489 [12 November 2022]. S2CID 83631931. doi:10.1086/511011. 
  6. ^ 6.0 6.1 6.2 6.3 Cruzan, Mitchell. Evolutionary Biology A Plant Perspective. New York: Oxford University Press. 2018: 37–39. ISBN 978-0-19-088267-9. 
  7. ^ Cascales-Miñana, B.; Cleal, C. J. Plant fossil record and survival analyses. Lethaia. 2011, 45: 71–82. doi:10.1111/j.1502-3931.2011.00262.x. 
  8. ^ 8.0 8.1 Pawlik, Łukasz; Buma, Brian; Šamonil, Pavel; Kvaček, Jiří; Gałązka, Anna; Kohout, Petr; Malik, Ireneusz. Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth's system properties - A critical review. Earth-Science Reviews. June 2020, 205: 103200. Bibcode:2020ESRv..20503200P. doi:10.1016/j.earscirev.2020.103200 . hdl:20.500.12128/14041  (英語). 
  9. ^ Retallack, Gregory J. Ordovician-Devonian lichen canopies before evolution of woody trees. Gondwana Research. June 2022, 106: 211–223 [22 November 2022]. Bibcode:2022GondR.106..211R. S2CID 246320087. doi:10.1016/j.gr.2022.01.010. 
  10. ^ Lutzoni, François; Nowak, Michael D.; Alfaro, Michael E.; Reeb, Valérie; Miadlikowska, Jolanta; Krug, Michael; Arnold, A. Elizabeth; Lewis, Louise A.; Swofford, David L.; Hibbett, David; Hilu, Khidir; James, Timothy Y.; Quandt, Dietmar; Magallón, Susana. Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications. 21 December 2018, 9 (1): 5451. Bibcode:2018NatCo...9.5451L. PMC 6303338 . PMID 30575731. doi:10.1038/s41467-018-07849-9 . 
  11. ^ 11.0 11.1 Feng, Zhuo. Late Palaeozoic plants. Current Biology. 11 September 2017, 27 (17): R905–R909. PMID 28898663. doi:10.1016/j.cub.2017.07.041 . 
  12. ^ Lenton, Timothy M.; Crouch, Michael; Johnson, Martin; Pires, Nuno; Dolan, Liam. First plants cooled the Ordovician. Nature Geoscience. 1 February 2012, 5 (2): 86–89 [18 October 2022]. Bibcode:2012NatGe...5...86L. ISSN 1752-0908. doi:10.1038/ngeo1390 (英語). 
  13. ^ Adiatma, Y. Datu; Saltzman, Matthew R.; Young, Seth A.; Griffith, Elizabeth M.; Kozik, Nevin P.; Edwards, Cole T.; Leslie, Stephen A.; Bancroft, Alyssa M. Did early land plants produce a stepwise change in atmospheric oxygen during the Late Ordovician (Sandbian ~458 Ma)?. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 November 2019, 534: 109341. Bibcode:2019PPP...53409341A. S2CID 201309297. doi:10.1016/j.palaeo.2019.109341  (英語). 
  14. ^ Quinton, Page C.; Rygel, Michael C.; Heins, Megan. Sequence stratigraphy and carbon isotopes from the Trenton and Black River Groups near Union Furnace, PA: Constraining the role of land plants in the Ordovician world. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 July 2017, 574: 110440 [17 October 2023]. ISSN 0031-0182. S2CID 235577811. doi:10.1016/j.palaeo.2021.110440. 
  15. ^ Rubinstein, Claudia V.; Vajda, Vivi. Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden. Geologiska Föreningens Förhandlingar. 24 July 2019, 141 (3): 181–190. Bibcode:2019GFF...141..181R. ISSN 1103-5897. doi:10.1080/11035897.2019.1636860 . hdl:11336/124409  (英語). 
  16. ^ Yuan, Wei; Liu, Mu; Chen, Daizhao; Xing, Yao-Wu; Spicer, Robert A.; Chen, Jitao; Them, Theodore R.; Wang, Xun; Li, Shizhen; Guo, Chuan; Zhang, Gongjing; Zhang, Liyu; Zhang, Hui; Feng, Xinbin. Mercury isotopes show vascular plants had colonized land extensively by the early Silurian. Science Advances. 28 April 2023, 9 (17): eade9510. Bibcode:2023SciA....9E9510Y. ISSN 2375-2548. PMC 10146902 . PMID 37115923. doi:10.1126/sciadv.ade9510 (英語). 
  17. ^ Pšenička, Josef; Bek, Jiří; Frýda, Jiří; Žárský, Viktor; Uhlířová, Monika; Štorch, Petr. Dynamics of Silurian Plants as Response to Climate Changes. Life. 31 August 2022, 11 (9): 906. PMC 8470493 . PMID 34575055. doi:10.3390/life11090906 . 
  18. ^ Bek, Jiří; Štorch, Petr; Tonarová, Petra; Libertín, Milan. Early Silurian (mid-Sheinwoodian) palynomorphs from the Loděnice-Špičatý vrch, Prague Basin, Czech Republic.. Bulletin of Geosciences. 2022, 97 (3): 385–396. S2CID 252148763. doi:10.3140/bull.geosci.1831 . 
  19. ^ Libertín, Milan; Kvaček, Jiří; Bek, Jiří; Žárský, Viktor; Štorch, Petr. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nature Plants. 30 April 2018, 4 (5): 269–271 [9 November 2022]. PMID 29725100. S2CID 256679794. doi:10.1038/s41477-018-0140-y. 
  20. ^ Rickards, R. B. The age of the earliest club mosses: the Silurian Baragwanathia flora in Victoria, Australia. Geological Magazine. 1 March 2000, 137 (2): 207–209 [11 November 2022]. Bibcode:2000GeoM..137..207R. S2CID 131287538. doi:10.1017/S0016756800003800. 
  21. ^ Kraft, Petr; Kvaček, Zlatko. Where the lycophytes come from? – A piece of the story from the Silurian of peri-Gondwana. Gondwana Research. May 2017, 45: 180–190 [16 June 2024]. doi:10.1016/j.gr.2017.02.001 –透過Elsevier Science Direct (英語). 
  22. ^ Césari, Silvia N.; Marenssi, Sergio; Limarino, Carlos O.; Ciccioli, Patricia L.; Bello, Fanny C.; Ferreira, Luis C.; Scarlatta, Leonardo R. The first upper Silurian land-derived palynological assemblage from South America: Depositional environment and stratigraphic significance. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 December 2020, 559: 109970 [11 November 2022]. Bibcode:2020PPP...55909970C. S2CID 225020262. doi:10.1016/j.palaeo.2020.109970. 
  23. ^ Kraft, Petr; Pšenička, Josef; Sakala, Jakub; Frýda, Jiří. Initial plant diversification and dispersal event in upper Silurian of the Prague Basin. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 January 2019, 514: 144–155 [9 November 2022]. Bibcode:2019PPP...514..144K. S2CID 133777180. doi:10.1016/j.palaeo.2018.09.034. 
  24. ^ Uhlířová, Monika; Pšenička, Josef; Sakala, Jakub; Bek, Jiří. A study of the large Silurian land plant Tichavekia grandis Pšenička et al. from the Požáry Formation (Czech Republic). Review of Palaeobotany and Palynology. March 2022, 298: 104587 [11 November 2022]. Bibcode:2022RPaPa.29804587U. S2CID 245295312. doi:10.1016/j.revpalbo.2021.104587. 
  25. ^ Shen, Zhen; Monnet, Claude; Cascales-Miñana, Borja; Gong, Yiming; Dong, Xianghong; Kroeck, David M.; Servais, Thomas. Diversity dynamics of Devonian terrestrial palynofloras from China: Regional and global significance. Earth-Science Reviews. January 2020, 200: 102967 [22 November 2022]. Bibcode:2020ESRv..20002967S. S2CID 210618841. doi:10.1016/j.earscirev.2019.102967. hdl:20.500.12210/34284 . 
  26. ^ Xu, Hong-He; Wang, Yi; Tang, Peng; Fu, Qiang; Wang, Yao. Discovery of Lower Devonian plants from Jiangxi, South China and the pattern of Devonian transgression after the Kwangsian Orogeny in the Cathaysia Block. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 October 2019, 531: 108982 [12 November 2022]. Bibcode:2019PPP...53108982X. S2CID 133712540. doi:10.1016/j.palaeo.2018.11.007. 
  27. ^ Xu, Hong-He; Yang, Ning; Bai, Jiao; Wang, Yao; Liu, Feng; Ouyang, Shu. Palynological assemblage of the Lower Devonian of Hezhang, Guizhou, southwestern China. Review of Palaeobotany and Palynology. 1 February 2022, 297: 104561 [25 November 2023]. Bibcode:2022RPaPa.29704561X. ISSN 0034-6667. S2CID 244048051. doi:10.1016/j.revpalbo.2021.104561. 
  28. ^ Cascales-Miñana, Borja; Meyer-Berthaud, Brigitte. Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 April 2015, 423: 53–61 [20 May 2024]. doi:10.1016/j.palaeo.2015.01.024 –透過Elsevier Science Direct (英語). 
  29. ^ Toledo, Selin; Bippus, Alexander C.; Atkinson, Brian A.; Bronson, Allison W.; Tomescu, Alexandru M. F. Taxon sampling and alternative hypotheses of relationships in the euphyllophyte plexus that gave rise to seed plants: insights from an Early Devonian radiatopsid. New Phytologist. 25 May 2021, 232 (2): 914–927. PMID 34031894. S2CID 235199240. doi:10.1111/nph.17511 . 
  30. ^ Hibbett, David; Blanchette, Robert; Kenrick, Paul; Mills, Benjamin. Climate, decay, and the death of the coal forests. Current Biology. 11 July 2016, 26 (13): R563–R567. PMID 27404250. doi:10.1016/j.cub.2016.01.014 . 
  31. ^ Davies, Neil S.; McMahon, William J.; Berry, Christopher M. Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England. Journal of the Geological Society. 23 February 2024 [25 February 2024]. ISSN 0016-7649. doi:10.1144/jgs2023-204  –透過GeoScienceWorld (英語). 
  32. ^ 32.0 32.1 Xu, Hong-He; Berry, Christopher M.; Stein, William E.; Wang, Yi; Tang, Peng; Fu, Qiang. Unique growth strategy in the Earth's first trees revealed in silicified fossil trunks from China. Proceedings of the National Academy of Sciences of the United States of America. 23 October 2017, 114 (45): 12009–12014 [18 May 2023]. Bibcode:2017PNAS..11412009X. PMC 5692553 . PMID 29078324. doi:10.1073/pnas.1708241114 . 
  33. ^ Stein, William E.; Berry, Christopher M.; Morris, Jennifer L.; Hernick, Linda VanAller; Mannolini, Frank; Ver Straeten, Charles; Landing, Ed; Marshall, John E. A.; Wellman, Charles H.; Beerling, David J.; Leake, Jonathan R. Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Current Biology. 3 February 2020, 30 (3): 321–331. PMID 31866369. S2CID 209422168. doi:10.1016/j.cub.2019.11.067 . 
  34. ^ Berry, Christopher M.; Marshall, John E.A. Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard. Geology. December 2015, 43 (12): 1043–1046. Bibcode:2015Geo....43.1043B. ISSN 1943-2682. doi:10.1130/G37000.1  (英語). 
  35. ^ Meyer-Berthaud, B.; Soria, A.; Decombeix, A.-L. The land plant cover in the Devonian: a reassessment of the evolution of the tree habit. Geological Society, London, Special Publications. 2010, 339 (1): 59–70. Bibcode:2010GSLSP.339...59M. ISSN 0305-8719. S2CID 129915170. doi:10.1144/SP339.6 (英語). 
  36. ^ Salles, Tristan; Husson, Laurent; Lorcery, Manon; Hadler Boggiani, Beatriz. Landscape dynamics and the Phanerozoic diversification of the biosphere. Nature. 7 December 2023, 624 (7990): 115–121 [31 December 2023]. Bibcode:2023Natur.624..115S. ISSN 0028-0836. PMC 10700141 . PMID 38030724. doi:10.1038/s41586-023-06777-z (英語). 
  37. ^ Wellman, Charles H. Ultrastructure of dispersed and in situ specimens of the Devonian spore Rhabdosporites langii: evidence for the evolutionary relationships of progymnosperms. Palaeontology. 31 December 2008, 52 (1): 139–167 [25 December 2022]. S2CID 128869785. doi:10.1111/j.1475-4983.2008.00823.x. 
  38. ^ Bateman, Richard M.; Crane, Peter R.; DiMichele, William A.; Kenrick, Paul R.; Rowe, Nick P.; Speck, Thomas; Stein, William E. Early Evolution of Land Plants: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation. Annual Review of Ecology and Systematics. November 1998, 29: 263–292 [26 December 2022]. doi:10.1146/annurev.ecolsys.29.1.263. 
  39. ^ Labandeira, Conrad. Silurian to Triassic Plant and Hexapod Clades and their Associations: New Data, a Review, and Interpretations (PDF). Arthropod Systematics & Phylogeny. 30 October 2006, 63 (1): 53–94 [23 January 2023]. doi:10.3897/asp.64.e31644 . 
  40. ^ Retallack, Gregory J. Early Forest Soils and Their Role in Devonian Global Change. Science. 25 April 1997, 276 (5312): 583–585 [23 July 2023]. PMID 9110975. doi:10.1126/science.276.5312.583. 
  41. ^ Boyce, C. Kevin; Lee, Jung-Eun. Plant Evolution and Climate Over Geological Timescales. Annual Review of Earth and Planetary Sciences. 30 August 2017, 45 (1): 61–87 [20 June 2024]. ISSN 0084-6597. doi:10.1146/annurev-earth-063016-015629 (英語). 
  42. ^ 42.0 42.1 Le Hir, Guillaume; Donnadieu, Yannick; Goddéris, Yves; Meyer-Berthaud, Brigitte; Ramstein, Gilles; Blakey, Ronald C. The climate change caused by the land plant invasion in the Devonian. Earth and Planetary Science Letters. October 2011, 310 (3–4): 203–212. Bibcode:2011E&PSL.310..203L. doi:10.1016/j.epsl.2011.08.042 (英語). 
  43. ^ Rosa, Eduardo L. M.; Isbell, John L. Late Paleozoic Glaciation. Alderton, David; Elias, Scott A. (編). Encyclopedia of Geology 2nd. Academic Press. 2021: 534–545. ISBN 978-0-08-102909-1. S2CID 226643402. doi:10.1016/B978-0-08-102908-4.00063-1. 
  44. ^ Qie, Wenkun; Algeo, Thomas J.; Luo, Genming; Herrmann, Achim. Global events of the Late Paleozoic (Early Devonian to Middle Permian): A review. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 October 2019, 531: 109259 [23 December 2022]. Bibcode:2019PPP...53109259Q. S2CID 198423364. doi:10.1016/j.palaeo.2019.109259. 
  45. ^ Streel, Maurice; Caputo, Mário V.; Loboziak, Stanislas; Melo, José Henrique G. Late Frasnian–Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth-Science Reviews. November 2000, 52 (1–3): 121–173 [28 January 2023]. Bibcode:2000ESRv...52..121S. doi:10.1016/S0012-8252(00)00026-X. 
  46. ^ Mintz, Jason S.; Driese, Steven G.; White, Joseph D. Environmental and Ecological Variability of Middle Devonian (Givetian) Forests in Appalachian Basin Paleosols, New York, United States. PALAIOS. 1 January 2010, 25 (2): 85–96 [2 August 2023]. Bibcode:2010Palai..25...85M. S2CID 130624914. doi:10.2110/palo.2009.p09-086r. 
  47. ^ D』Antonio, Michael P.; Ibarra, Daniel E.; Boyce, C. Kevin. Land plant evolution decreased, rather than increased, weathering rates. Geology. 28 October 2019, 48 (1): 29–33 [28 August 2024]. ISSN 0091-7613. doi:10.1130/G46776.1 –透過GeoScienceWorld (英語). 
  48. ^ Glasspool, Ian J.; Scott, Andrew C.; Waltham, David; Pronina, Natalia; Shao, Longyi. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science. 23 September 2015, 6: 756. ISSN 1664-462X. PMC 4585212 . PMID 26442069. doi:10.3389/fpls.2015.00756 . 
  49. ^ Glasspool, I. J.; Edwards, D.; Axe, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology. 1 May 2004, 32 (5): 381 [17 October 2023]. Bibcode:2004Geo....32..381G. ISSN 0091-7613. doi:10.1130/G20363.1 (英語). 
  50. ^ Algeo, Thomas J.; Ingall, Ellery. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology. Neoproterozoic to Paleozoic Ocean Chemistry. 6 December 2007, 256 (3): 130–155 [12 December 2023]. Bibcode:2007PPP...256..130A. ISSN 0031-0182. doi:10.1016/j.palaeo.2007.02.029 –透過Elsevier Science Direct. 
  51. ^ Marynowski, Leszek; Filipiak, Paweł; Zatoń, Michał. Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine. 15 January 2010, 147 (4): 527–550 [24 March 2023]. Bibcode:2010GeoM..147..527M. S2CID 140657109. doi:10.1017/S0016756809990835. 
  52. ^ Marynowski, Leszek; Filipak, Paweł. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine. 1 May 2007, 144 (3): 569–595 [28 January 2023]. Bibcode:2007GeoM..144..569M. S2CID 129306243. doi:10.1017/S0016756807003317. 
  53. ^ Buatois, Luis A.; Davies, Neil S.; Gibling, Martin R.; Krapovickas, Verónica; Labandeira, Conrad C.; MacNaughton, Robert B.; Mángano, M. Gabriela; Minter, Nicholas J.; Shillito, Anthony P. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integrative and Comparative Biology. 31 May 2022, 62 (2): 297–331 [2 April 2023]. PMID 35640908. doi:10.1093/icb/icac059. 
  54. ^ Dahl, Tais W.; Arens, Susanne K. M. The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology. 5 August 2020, 547: 119665 [29 September 2023]. Bibcode:2020ChGeo.54719665D. ISSN 0009-2541. S2CID 219484664. doi:10.1016/j.chemgeo.2020.119665 . 
  55. ^ Smart, Matthew S.; Filippelli, Gabriel; Gilhooly III, William P.; Marshall, John E.A.; Whiteside, Jessica H. Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: Evidence from lacustrine phosphorus and geochemical records. Geological Society of America Bulletin. 9 November 2022 [2 August 2023]. doi:10.1130/B36384.1 . 
  56. ^ Algeo, T.J.; Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society B: Biological Sciences. 1998, 353 (1365): 113–130. PMC 1692181 . doi:10.1098/rstb.1998.0195. 
  57. ^ Becker, R. T.; Königshof, P.; Brett, C. E. Devonian climate, sea level and evolutionary events: an introduction. Geological Society, London, Special Publications. 1 January 2016, 423 (1): 1–10. Bibcode:2016GSLSP.423....1B. ISSN 0305-8719. doi:10.1144/SP423.15  (英語).