使用者:ItMarki/數量級 (溫度)
倍數 | 單位 | 項目 |
---|---|---|
0 | 0 K | 絕對零度:自由物體達到零點能量,不在熱力學系統時不會產生交互作用 |
10−30 | 1 qK | |
10−18 | 1 aK | |
10−15 | 1 fK | |
10−12 | 1 pK | 38 pK:已知達到的最低溫度,由銣製玻色–愛因斯坦凝態的物質波透鏡產生。[1] 100 pK:最低溫度記錄,由銠金屬的核自旋的冷卻產生。.[2] 450 pK:實驗室里達到的最低溫度記錄,為麻省理工學院中的鈉製玻色–愛因斯坦凝聚氣體達到的最低溫度。[3] |
10−9 | 1 nK | 50 nK:鉀-40的費米溫度 鹼金屬玻色–愛因斯坦凝態的臨界溫度 |
10−6 | 1 μK | |
10−3 | 1 mK | 無線電波激發 1.7 mK:氦-3/氦-4稀釋致冷的最低溫度記錄,也是用已知技巧可無限期維持的最低溫度。 2.5 mK:氦-3的費米熔點 60 mK:順磁性分子的絕熱退磁 300 mK:氦-3的蒸發冷卻 700 mK:氦-3/氦-4混合物出現相的分離 950 mK:氦在2.5 MPa下的熔點。所有118種元素在此溫度或以下皆為固體。 微波激發 |
1 | 1 K | 1 K:回力棒星雲,已知最冷的自然環境 4.1 K:汞的超導轉變溫度 4.22 K:束縛氦的沸點 5.19 K:束縛氦的臨界點 7.2 K:鉛的超導轉變溫度 9.3 K:鈮的超導轉變溫度 |
101 | 10 K | 超導現象中價電子的費米熔點 14.01 K:束縛氫的熔點 20.28 K:束縛氫的沸點 33 K:氫的臨界點 44 K:冥王星的平均表面溫度 53 K:海王星的平均表面溫度 63 K:束縛氮的熔點 68 K:天王星的平均表面溫度 77.35 K:束縛氮的沸點 90.19 K:束縛氧的沸點 92 K:Y–Ba–Cu–氧化物(YBCO)的超導轉變溫度 |
102 | 100 K | 紅外線激發 134 K:常壓下的最高溫超導體(汞-鋇-鈣-銅氧化物) 165 K:過冷水的玻璃轉化溫度 184.0 K(–89.2 °C):地球上錄得最低的氣溫 192 K:冰的德拜溫度 273.15 K(0 °C):束縛水的熔 273.16 K (0.01 °C):水的三相點溫度 ~293 K:室溫 373.15 K(100 °C),海平面上束縛水的沸點 647 K:過熱水臨界點 737.5 K:金星的平均表面溫度 (參見以下詳表) |
103 | 1 kK | Visible light excitations 500–2200 K on brown dwarfs (photosphere) 1043 K Curie temperature of iron (point at which iron transitions from ferromagnetic to paramagnetic behavior and loses any permanent magnetism) 1170 K at wood fire 1300 K in lava flows, open flames 1500 K in basalt lava flows ~1670 K at blue candle flame 1811 K, melting point of iron (lower for steel) 1830 K in Bunsen burner flame 1900 K at the Space Shuttle orbiter hull in 8 km/s dive 2022 K, boiling point of lead 2074 K, surface temperature of the coolest star, 2MASS J0523-1403 |
104 | 10 kK | 10 kK on Sirius A 10–15 kK in mononitrogen recombination 15.5 kK, critical point of tungsten 25 kK, mean of the Universe 10,000 years after the Big Bang 26 kK on white dwarf Sirius B 28 kK in record cationic lightning over Earth 29 kK on surface of Alnitak (easternmost star of Orion's belt) 4–8–40–160 kK on white dwarfs 30–400 kK on a planetary nebula's asymptotic giant helium star 36 kK boundary between inner and outer core within Jupiter 37 kK in proton–electron reactions 38 kK on Eta Carinae 46 kK on Wolf–Rayet star R136a1[11] 50 kK at protostar (core) 54.5 kK on ON2 III(f*) star LH64-16[12] >200 kK on Butterfly Nebula ~300 kK at 17 meters from Little Boy's detonation Fermi boiling point of valence electrons X-ray excitations |
106 | 1 MK | 0.8 MK in solar wind gamma ray excitations 1 MK inside old neutron stars, brown dwarfs, and at gravital deuterium fusion range 1–3–10 MK above Sun (corona) 2.4 MK at T Tauri stars and gravital lithium-6 fusion range 2.5 MK at red dwarfs and gravital protium fusion range 10 MK at orange dwarfs and gravital helium-3 fusion range 15.6 MK at Sun's core 10–30–100 MK in stellar flares 20 MK in novae 23 MK, beryllium-7 fusion range 60 MK above Eta Carinae 85 MK (15 keV) in a magnetic confinement fusion plasma 200 MK at helium star and gravital helium-4 fusion range 230 MK, gravital carbon-12 fusion range 460 MK, gravital neon fusion–disproportionation range 5–530 MK in Tokamak Fusion Test Reactor's plasma 750 MK, gravital oxygen fusion range |
109 | 1 GK | 1 GK, everything 100 seconds after the Big Bang 1.3–1.7 GK, gravital silicon fusion range 3 GK in electron–positron reactions 10 GK in supernovae 10 GK, everything 1 second after the Big Bang 700 GK in quasars' accretion discs 740 GK, Hagedorn temperature or Fermi melting point of pions |
1012 | 1 TK | 0.1–1 TK at new neutron star 0.5–1.2 TK, Fermi melting point of hadrons into quark–gluon plasma 3–5 TK in proton–antiproton reactions 3.6 TK, temperature at which matter doubles in mass (compared to its mass at 0 K) due to relativistic effects 5.5 TK, highest man-made temperature in thermal equilibrium as of 2015 (quark–gluon plasma from LHC collisions)[13] 10 TK, 100 microseconds after the Big Bang 45–67 TK at collapsar of a gamma-ray burst 300–900 TK at proton–nickel conversions in the Tevatron's Main Injector[需要解釋] |
1015 | 1 PK | 0.3–2.2 PK at proton–antiproton collisions
2.8 PK within an electroweak star |
1018 | 1 EK | |
1021 | 1 ZK | |
1024 | 1 YK | 0.5–7 YK at ultra-high-energy cosmic ray collisions |
1027 | 1 RK | everything 10−35 seconds after the Big Bang |
1030 | 1 QK | Hagedorn temperature of strings |
1032 | 100 QK | 142 QK, Planck temperature |
1033 | 1000 QK | Theory of everything excitations[來源請求] |
10290 | 10260 QK | Landau pole of Quantum electrodynamics |
100 K到1000 K的詳表
編輯大多數人類活動都在此數量級的溫度內進行。水為液體的溫度以淺灰色表示。
克耳文 | 攝氏度 | 華氏度 | 條件 |
---|---|---|---|
100 K | −173.15 °C | −279.67 °F | |
133 K至163 K | −140至−110 °C | −220至−160 °F | 全身冷療室的一般溫度[14] |
165 K | −108 °C | −163 °F | 過冷水的玻璃轉化溫度(有爭議)[15] |
175.4 K | −97.8 °C | −144 °F | 地球上錄得最低的亮度溫度,以衛星遠端測量(南極洲)[16] |
183.7 K | −89.5 °C | −129.1 °F | 異丙醇的凝固點/熔點[17] |
183.9 K | −89.2 °C | −128.6 °F | 地球上錄得最低的氣溫(南極洲沃斯托克站,1983-07-21 01:45 UTC) |
192 K | −81 °C | −114 °F | 冰的德拜溫度 |
193至203 K | −80至−70 °C | −112至−94 °F | 超低溫冰箱的一般溫度 |
194.6 K | −78.5 °C | −109.3 °F | 二氧化碳(乾冰)的昇華點 |
205.5 K | −67.7 °C | −89.9 °F | 北半球上錄得最低的氣溫(蘇聯奧伊米亞康,1933-02-06)[18] |
207.05 K | −66.1 °C | −86.98 °F | 北美洲上錄得最低的氣溫(格陵蘭北冰,1954-01-09)[19] |
210 K | −63 °C | −80 °F | 火星的平均表面溫度 |
214.9 K | –58.3 °C | –72.9 °F | 地球上最低的年均溫度(南極洲冰穹A)[20] |
223.15 K | −50 °C | −58 °F | 大約6億5000萬年前雪球地球的平均表面溫度[21] |
224.8 K | −48.4 °C | −55.0 °F | 水可以保持液體的最低溫度(參見過冷) |
225 K | −48 °C | −55 °F | 棉籽油的凝固點/熔點[22] |
233.15 K | −40 °C | −40 °F | 攝氏溫標和華氏溫標的相交點 人類皮膚在此溫度或以下可能會立即凍傷[23] |
234.3 K | −38.83 °C | −37.89 °F | 汞的凝固點/熔點 |
240.4 K | −32.8 °C | −27.0 °F | 南美洲上錄得最低的氣溫(阿根廷薩緬托,1907-06-01)[24] |
246 K | −27 °C | −17 °F | 珠穆朗瑪峰的大約年均溫度[25] |
249 K | –24 °C | –11 °F | 亞麻籽油的凝固點/熔點[22] |
249.3 K | –23.9 °C | –11.0 °F | 非洲上錄得最低的氣溫(摩洛哥伊夫蘭,1935-02-11)[24] |
250 K | –23 °C | –9 °F | 澳洲上錄得最低的氣溫(澳洲新南威爾斯州夏洛特山口,1994-06-29)[24] |
255.37 K | –177⁄9 °C | 0 °F | 丹尼爾·加布里爾·華倫海特錄得鹽水-冰混合物的最低溫度 |
255 K | –18 °C | 0 °F | 杏仁油的凝固點/熔點[22] 家用冷凍箱的一般溫度[26] |
256 K | –17 °C | 1 °F | 葵花籽油的凝固點/熔點[22] |
256 K | –17 °C | 2 °F | 紅花油的凝固點/熔點[22] |
257 K | –16 °C | 3 °F | 大豆油的凝固點/熔點[22] |
262 K | −11 °C | 12 °F | 玉米油的凝固點/熔點[22] |
263.15 K | –10 °C | 14 °F | 芥花籽油的凝固點/熔點[22] 葡萄籽油的凝固點/熔點[22] |
265 K | –8 °C | 18 °F | 在此溫度以下,白霜可以形成(參見霜) 大麻籽油的凝固點/熔點[22] |
265.8 K | –7.2 °C | 19 °F | 溴的凝固點/熔點 |
267 K | –6 °C | 21 °F | 橄欖油的凝固點/熔點[22] 芝麻油的凝固點/熔點[22] |
271.15 K | −2 °C | 28.4 °F | 海洋的凝固點/熔點。海洋的鹽度大約為3.47%。[27][28] |
273.14 K | -0.01 °C | 31.98 °F | 可導致凍傷的最高溫度 |
273.15 K | 0.00 °C | 32.00 °F | 淡水的凝固點/熔點(1 atm) |
273.16 K | 0.01 °C | 32.02 °F | 淡水的三相點 |
276 K | 3 °C | 37 °F | 花生油的凝固點/熔點[29] |
277 K | 4 °C | 39 °F | 家用冷藏室的一般溫度 |
277.13 K | 3.98 °C | 39.16 °F | 水到達最高密度[30] |
279.8 K | 6.67 °C | 44 °F | 在此溫度以下,皮膚很有可能會麻木 |
283.2 K | 10 °C | 50 °F | 大多數植物可生長的最低溫度(參見生長度日) |
286.9 K | 12.7 °C | 54.9 °F | 人類在意外失溫症下能存活的最低體溫(波蘭拉茨瓦維采的一名2歲男孩,2014年3月30日)[31][32] |
287.6 K | 14.44 °C | 58 °F | 皮膚的一般疼痛閾值 |
288 K | 15 °C | 59 °F | 地球的平均表面溫度 |
291.6 K | 18.4 °C | 65.1 °F | 南極洲錄得的最熱溫度(埃斯佩蘭薩站,2020-02-06)[33] |
294 K | 21 °C | 70 °F | 常溫的一般定義值 |
296 K | 23 °C | 73 °F | 大約5580萬年前古新世—始新世極熱事件中地球的平均表面溫度[34] |
297 K | 24 °C | 75 °F | 棕櫚仁油的凝固點/熔點[22] |
298 K | 25 °C | 77 °F | 椰子油的凝固點/熔點[22] |
300 K | 27 °C | 81 °F | 裸體人類不動時的一般體溫[35][36] 鍅的估計凝固點/熔點 |
302.9 K | 29.8 °C | 85.6 °F | 鎵的凝固點/熔點 |
303.15 K | 30 °C | 86 °F | 在此溫度以上,植物的生長速度一般比在此溫度的慢(參見生長度日) |
304 K | 31 °C | 88 °F | 奶油的凝固點/熔點 二氧化碳的臨界點 |
307 K | 34 °C | 93 °F | 白磷的自燃溫度 |
307.6 K | 34.4 °C | 93.9 °F | 地球的最熱年均表面溫度(衣索比亞達洛爾)[20] |
308 K | 35 °C | 95 °F | 人類的失溫症體溫 錄得最熱的海溫(紅海) 棕櫚油的凝固點/熔點[22] |
309.5 K | 36.4 °C | 97.5 °F | 人類的平均體溫[37] |
311.03 K | 37.87 °C | 100.2 °F | 人類發燒的初期溫度 |
311.8 K | 38.6 °C | 101.5 °F | 貓的平均體溫[38] |
313.15 K | 40 °C | 104 °F | 熱水浴的最大推薦溫度[39] |
315 K | 42 °C | 108 °F | 此溫度的人類發燒通常致命 |
317.6 K | 44.44 °C | 112 °F | 皮膚的熱疼痛閾值 |
319.3 K | 46.1 °C | 115 °F | 世界上下雨時錄得最熱的氣溫(美國加利福尼亞州尼德爾斯,2012年8月13日)[40] |
319.7 K | 46.5 °C | 115.7 °F | 人類倖存的最熱發燒[41] |
322.1 K | 48.9 °C | 120.0 °F | 南美洲錄得最熱的氣溫(阿根廷里瓦達維亞,1905年12月11日)[24] 數個美國水管法規所述熱水的最高安全溫度[42] 此溫度的水會在接觸8分鐘後引致二級燒傷,在10分鐘後引致三級燒傷[42] |
323.14 K | 49.99 °C | 121.99 °F | 結冰和沸騰的中點 |
323.9 K | 50.7 °C | 123.3 °F | 南半球錄得最熱的氣溫(澳洲烏德納達塔,1960年2月1日)[24] |
329.87 K | 56.7 °C | 134.1 °F | 地球上錄得最熱的氣溫(美國加利福尼亞州因約縣弗內斯克里克死亡谷,1913年7月10日)[43] |
333.15 K | 60 °C | 140 °F | 此溫度的水會在接觸3秒後引致二級燒傷,在5秒後引致三級燒傷[42] 吹風機的平均溫度 |
336 K | 63 °C | 145.4 °F | 牛奶的巴斯德消毒法 |
342 K | 69 °C | 157 °F | 珠穆朗瑪峰上水的沸點[44] |
343.15 K | 70 °C | 158 °F | 食物全熟 部分細菌能生存的溫泉[45] |
350 K | 77 °C | 170 °F | 食物水煮 |
351.52 K | 78.37 °C | 173.07 °F | 乙醇的沸點 |
353.15 K | 80 °C | 176 °F | 桑拿的平均溫度 |
355 K | 82 °C | 180 °F | 工業級商業洗碗機的建議最後沖洗溫度[46] |
355.6 K | 82.4 °C | 180.3 °F | 2-丙醇的沸點[17] |
366 K | 93 °C | 200 °F | 食物燉煮 |
367 K | 94 °C | 201 °F | 地球上錄得最熱的地面溫度(美國加利福尼亞州因約縣弗內斯克里克死亡谷,1972年7月15日)[47] |
371 K | 98 °C | 209 °F | 鈉的凝固點/熔點 |
373.13 K | 99.98 °C | 211.97 °F | 1 atm的壓力下水的沸點(見攝氏溫標) |
380 K | 107 °C | 225 °F | 未加工紅花油的冒煙點 糖漿濃縮至75%糖 |
388 K | 115 °C | 239 °F | 硫的凝固點/熔點 |
400 K | 127 °C | 260 °F | 超音速飛行中協和式客機機頭的溫度 太空已知溫度最低的恆星(大約溫度)[48] |
433.15 K | 160 °C | 320 °F | 糖漿濃縮至100%糖 蔗糖(食糖)焦糖化 |
450 K | 177 °C | 350 °F | 水星的平均表面溫度 奶油的冒煙點 油炸溫度 |
453.15 K | 180 °C | 356 °F | 爆米花爆炸 |
483 K | 210 °C | 410 °F | 柴油的自燃溫度 |
491 K | 218 °C | 425 °F | 紙的自燃溫度 |
519 K | 246 °C | 475 °F | 汽油的自燃溫度 |
522 K | 249 °C | 480 °F | 航空煤油(Jet A/Jet A-1)的自燃溫度[49] |
525 K | 252 °C | 485 °F | 乳脂的冒煙點 航空煤油(Jet B)的自燃溫度[49] |
538 K | 265 °C | 510 °F | 提煉紅花油的冒煙點 |
574.5875 K | 301.4375 °C | 574.5875 °F | 華氏和克耳文溫標的相交點 |
600.65 K | 327.5 °C | 621.5 °F | 鉛的熔點/凝固點 |
647 K | 374 °C | 705 °F | 過熱水的臨界 |
693 K | 419 °C | 787 °F | 鋅的熔點/凝固點 |
723.15 K | 450 °C | 842 °F | 航空汽油的自燃溫度[49] |
738 K | 465 °C | 870 °F | 金星的平均表面溫度 |
749 K | 476 °C | 889 °F | 鎂的自燃溫度 |
798 K | 525 °C | 977 °F | 德雷珀點(幾乎所有物品都發出暗淡紅光的溫度)[50] |
858 K | 585 °C | 1085 °F | 氫的自燃溫度[51] |
933.47 K | 660.32 °C | 1220.58 °F | 鋁的熔點/凝固點 |
1000 K | 726.85 °C | 1340.33 °F |
SI multiples
編輯分數 | 倍數 | |||||
---|---|---|---|---|---|---|
值 | 符號 | 名稱 | 值 | 符號 | 名稱 | |
10−1 K | dK | 分克耳文 | 101 K | daK | 十克耳文 | |
10−2 K | cK | 厘克耳文 | 102 K | hK | 百克耳文 | |
10−3 K | mK | 毫克耳文 | 103 K | kK | 千克耳文 | |
10−6 K | µK | 微克耳文 | 106 K | MK | 百萬克耳文 | |
10−9 K | nK | 奈克耳文 | 109 K | GK | 吉克耳文 | |
10−12 K | pK | 皮克耳文 | 1012 K | TK | 兆克耳文 | |
10−15 K | fK | 飛克耳文 | 1015 K | PK | 拍克耳文 | |
10−18 K | aK | 阿克耳文 | 1018 K | EK | 艾克耳文 | |
10−21 K | zK | 介克耳文 | 1021 K | ZK | 皆克耳文 | |
10−24 K | yK | 攸克耳文 | 1024 K | YK | 佑克耳文 | |
10−27 K | rK | 柔克耳文 | 1027 K | RK | 羅克耳文 | |
10−30 K | qK | 虧克耳文 | 1030 K | QK | 奎克耳文 |
References
編輯- ^ Deppner, Christian; Herr, Waldemar; Cornelius, Merle; Stromberger, Peter; Sternke, Tammo; Grzeschik, Christoph; Grote, Alexander; Rudolph, Jan; Herrmann, Sven; Krutzik, Markus; Wenzlawski, André. Collective-Mode Enhanced Matter-Wave Optics. Physical Review Letters. 2021-08-30, 127 (10): 100401. Bibcode:2021PhRvL.127j0401D. ISSN 0031-9007. PMID 34533345. S2CID 237396804. doi:10.1103/PhysRevLett.127.100401 (英語).
- ^ World record in low temperatures. [2009-05-05]. (原始內容存檔於2009-06-18).
- ^ Bose-Einstein condensates break temperature record.
- ^ Savvatimskii, Aleksandr I. Melting point of graphite and liquid carbon (Concerning the paper 'Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures' by EI Asinovskii, A V Kirillin, and a V Kostanovskii). Physics-Uspekhi. 2003, 46 (12): 1295–1303. Bibcode:2003PhyU...46.1295S. S2CID 250746507. doi:10.1070/PU2003v046n12ABEH001699.
- ^ Yang, C.C.; Li, S. Size-Dependent Temperature-Pressure Phase Diagram of Carbon. Journal of Physical Chemistry C. 2008, 112 (5): 1423–1426. doi:10.1021/jp076049+.
- ^ Correa, A. A.; Bonev, S. A.; Galli, G. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory. Proceedings of the National Academy of Sciences. 2006, 103 (5): 1204–8. Bibcode:2006PNAS..103.1204C. PMC 1345714 . PMID 16432191. doi:10.1073/pnas.0510489103 .
- ^ Wang, Xiaofei; Scandolo, Sandro; Car, Roberto. Carbon Phase Diagram from Ab Initio Molecular Dynamics. Physical Review Letters. 2005, 95 (18): 185701. Bibcode:2005PhRvL..95r5701W. PMID 16383918. S2CID 15373344. doi:10.1103/PhysRevLett.95.185701.
- ^ Gerald I. Kerley and Lalit Chhabildas, "Multicomponent-Multiphase Equation of State for Carbon", Sandia National Laboratories (2001)
- ^ Glosli, James; Ree, Francis. Liquid-Liquid Phase Transformation in Carbon. Physical Review Letters. 1999, 82 (23): 4659–4662. Bibcode:1999PhRvL..82.4659G. doi:10.1103/PhysRevLett.82.4659.
- ^ Man Chai Chang; Ryong, Ryoo; Mu Shik Jhon. Thermodynamic properties of liquid carbon. Carbon. 1985, 23 (5): 481–485. doi:10.1016/0008-6223(85)90083-1.
- ^ Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R. N.; Simón-Díaz, Sergio; Brands, Sarah A.; De Koter, Alex; Gräfener, Götz; Herrero, Artemio; Langer, Norbert; Lennon, Daniel J.; Maíz Apellániz, Jesus; Puls, Joachim; Vink, Jorick S. The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society. 2020, 499 (2): 1918. Bibcode:2020MNRAS.499.1918B. arXiv:2009.05136 . doi:10.1093/mnras/staa2801.
- ^ Massey, Philip; Bresolin, Fabio; Kudritzki, Rolf P.; Puls, Joachim; Pauldrach, A. W. A. The Physical Properties and Effective Temperature Scale of O‐Type Stars as a Function of Metallicity. I. A Sample of 20 Stars in the Magellanic Clouds. The Astrophysical Journal. 2004, 608 (2): 1001–1027. Bibcode:2004ApJ...608.1001M. S2CID 119373878. arXiv:astro-ph/0402633 . doi:10.1086/420766.
- ^ Highest man-made temperature. Guinness World Records. Jim Pattison Group. [16 August 2015].
- ^ Whole-Body Cryotherapy FAQs. Coyne Medical. [2023-10-11].
- ^ Jestin Baby Mandumpal. A Journey Through Water: A Scientific Exploration of The Most Anomalous Liquid on Earth. Bentham Science Publishers. 2017: 148. ISBN 9781681084237.
- ^ New study explains Antarctica's coldest temperature. National Snow and Ice Data Center. 25 June 2018 [5 May 2021].
- ^ 17.0 17.1 http://www.nap.edu/openbook.php?record_id=690&page=56 The National Academies Press – Emergency and Continuous Exposure Limits for Selected Airborne Contaminants Volume 2 ( 1984 )
- ^ http://www.wunderground.com/blog/weatherhistorian/the-coldest-places-on-earth Weather Underground – Coldest Places on Earth
- ^ WMO Region VI (Europe): Lowest Temperature. World Meteorological Organization. [31 October 2016].
- ^ 20.0 20.1 http://www.currentresults.com/Weather-Extremes/ Current Results – Worlds Hottest and Coldest Places
- ^ http://www.space.com/9461-snowball-earth-scenario-plunged-planet-million-year-winters.html 'Snowball Earth' Scenario Plunged Our Planet Into Million-Year Winters
- ^ 22.00 22.01 22.02 22.03 22.04 22.05 22.06 22.07 22.08 22.09 22.10 22.11 22.12 22.13 22.14 Veganbaking.net – Fat and Oil Melt Point Temperatures http://www.veganbaking.net/tools/fat-and-oil-melt-point-temperatures
- ^ http://www.weathernotebook.org/transcripts/2001/02/07.html 網際網路檔案館的存檔,存檔日期2013-11-06. The Weather Notebook – 40 Below
- ^ 24.0 24.1 24.2 24.3 24.4 http://wmo.asu.edu/ ASU World Meteorological Organization – Global Weather & Climate Extremes
- ^ Temperature Everest Summit. Himalayan Wonders. [2023-10-11]. (Temperature calculated by averaging monthly temperatures given in graph)
- ^ Freezing and food safety. USDA. [6 August 2013]. (原始內容存檔於18 September 2013).
- ^ Can the ocean freeze? Ocean water freezes at a lower temperature than freshwater.. NOAA. [January 2, 2019].
- ^ Chester, Roy; Jickells, Tim. Marine Geochemistry. Blackwell Publishing. 2012. ISBN 978-1-118-34907-6.
- ^ http://www.newton.dep.anl.gov/askasci/chem03/chem03265.htm 網際網路檔案館的存檔,存檔日期2015-02-26. U.S. Dept. of Energy – Office of Science – Oils and Low Temperature
- ^ http://www.esf.edu/efb/schulz/Limnology/mixing.html College of Environmental Science and Forestry – Thermal Stratification
- ^ Agence France Presse in Warsaw. Doctors hail miracle as toddler survives freezing conditions in pyjamas. The Guardian. 2014-12-05 [2015-02-03].
- ^ 2-letni Adaś wyprowadzony z hipotermii. Światowe media donoszą o cudownym dziecku z Polski. Polskie Radio. 2015-12-05 [2015-02-03].
- ^ New record for Antarctic continent reported. World Meteorological Organization. [7 February 2020].
- ^ https://www.climate.gov/news-features/climate-qa/whats-hottest-earths-ever-been What's the hottest Earth's ever been?
- ^ Rintamäki, Hannu. Human responses to cold. Alaska Medicine. 2007, 49 (2 Suppl): 29–31. PMID 17929604.
- ^ https://www.health.harvard.edu/staying-healthy/cold-out-why-you-need-to-wear-a-hat Harvard Health Publishing - Cold out? Why you need to wear a hat!
- ^ Harvard Health Publishing - Time to redefine normal body temperature? https://www.health.harvard.edu/blog/time-to-redefine-normal-body-temperature-2020031319173
- ^ http://people.rit.edu/hmm5837/320/project2/page4.html 網際網路檔案館的存檔,存檔日期2013-11-12. Rochester Institute for Technology – Random Cat Facts
- ^ http://www.jacuzzi.com/hot-tubs/hot-tub-blog/ideal-hot-tub-water-temperature/ 網際網路檔案館的存檔,存檔日期2017-01-26.. Finding The Ideal Hot Tub Temperature. Jacuzzi
- ^ http://www.wunderground.com/blog/JeffMasters/hottest-rain-on-record-rain-falls-at-115f-in-needles-california Wunderground.com – Dr. Jeff Masters' Wunderblog – Hottest rain on record? Rain falls at 115°F in Needles, California
- ^ http://faculty.washington.edu/chudler/clock.html Biological Rhythums
- ^ 42.0 42.1 42.2 Antiscald Inc. [2014-09-12]. (原始內容存檔於2014-09-13).
- ^ Highest recorded temperature. Guinness World Records. 10 July 1913 [20 August 2018].
- ^ http://science.howstuffworks.com/dictionary/chemistry-terms/boiling-info.htm HowStuffWorks – Boiling
- ^ Joseph Seckbach, et al.: Polyextremophiles - life under multiple forms of stress. Springer, Dordrecht 2013, ISBN 978-94-007-6487-3,preface; @google books
- ^ "Residential Dishwashers". National Sanitation Foundation. Retrieved on 26 May 2017. http://www.nsf.org/consumer-resources/health-and-safety-tips/home-product-appliance-tips/sanitizing-dishwasher/
- ^ http://www.nps.gov/deva/naturescience/weather-and-climate.htm National Park Service – Death Valley – Weather and Climate
- ^ http://www.ifa.hawaii.edu/research/Stars.shtml University of Hawaii – Institute for Astronomy
- ^ 49.0 49.1 49.2 INTERNATIONAL FIRE TRAINING CENTRE: FIREFIGHTER INITIAL: AVIATION FUELS AND FUEL TANKS 網際網路檔案館的存檔,存檔日期2018-02-19. - International Fire Training Centre
- ^ Draper, John William. On the production of light by heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Taylor & Francis). 1847, 30 (202): 345–359. doi:10.1080/14786444708647190.
- ^ Spontaneous ignition of hydrogen (PDF). hse.gov.uk. 2008.